Sequences, Series, and Power Series

Definition Let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be a sequence of real numbers. Then

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots \quad \text { is called an infinite series (or just a series) }
$$

and

$$
s_{n}=\sum_{k=1}^{n} a_{k} \quad \text { is called the } n^{\text {th }} \text { partial sum of } \sum_{k=1}^{\infty} a_{k} .
$$

- The series $\sum_{k=1}^{\infty} a_{k}$ is called convergent if the sequence $\left\{s_{n}\right\}$ is convergent, or equivalently $\sum_{k=1}^{\infty} a_{k}$ is convergent if $\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} a_{k}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} a_{k}-\sum_{k=1}^{n} a_{k}\right)=0$.
- A number $s \in \mathbb{R}$ is called the sum of the series $\sum_{k=1}^{\infty} a_{k}$ if

$$
s=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\sum_{k=1}^{\infty} a_{k} \text { i.e. } \sum_{k=1}^{\infty} a_{k} \text { is convergent and it conveges to } s .
$$

- The series is called divergent if the sequence $\left\{s_{n}\right\}$ is divergent.

Theorems

1. If $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are convergent series, and if $c \in \mathbb{R}$, then so are the series

$$
\sum_{k=1}^{\infty} c a_{k}, \quad \sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) \quad \text { and } \quad \sum_{k=1}^{\infty}\left(a_{k}-b_{k}\right),
$$

with respectively

$$
\sum_{k=1}^{\infty} c a_{k}=c \sum_{k=1}^{\infty} a_{k}, \quad \sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{\infty} a_{k}+\sum_{k=1}^{\infty} b_{k} \quad \text { and } \quad \sum_{k=1}^{\infty}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{\infty} a_{k}-\sum_{k=1}^{\infty} b_{k} .
$$

2. (A Test for Divergence) If $\lim _{k \rightarrow \infty} a_{k}$ does not exist or if $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then the series $\sum_{k=1}^{\infty} a_{k}$ is divergent. Equivalently, if the series $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\lim _{k \rightarrow \infty} a_{k}=0$.
3. (Geometric Series) If $r \neq 1$ is a real number, then the geometric series

$$
\sum_{k=1}^{\infty} r^{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} r^{k}=\lim _{n \rightarrow \infty} \frac{r-r^{n+1}}{1-r} \begin{cases}\text { converges to } \frac{r}{1-r} & \text { if }|r|<1 \\ \text { diverges } & \text { if }|r|>1\end{cases}
$$

Examples

1. Suppose that

$$
s_{n}=\sum_{k=1}^{n} a_{k}=\frac{2 n}{3 n+5} \quad \text { for each } n=1,2, \ldots
$$

Then

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{2 n}{3 n+5}=\frac{2}{3}
$$

2. The sum of the geometric series $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots$ is

$$
5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots=5 \cdot \frac{1}{1-\left(-\frac{2}{3}\right)}=3
$$

3. The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ is divergent since

$$
s_{2^{n}}=\sum_{k=1}^{2^{n}} \frac{1}{k}=1+\left(\frac{1}{2}\right)+\left(\frac{1}{2+1}+\frac{1}{2^{2}}\right)+\cdots+\left(\frac{1}{2^{n-1}+1}+\cdots \frac{1}{2^{n}}\right) \geq 1+\frac{1}{2}+\frac{2}{2^{2}}+\cdots+\frac{2^{n-1}}{2^{n}}=1+\frac{n}{2} .
$$

4. The sum of the series $\sum_{k=1}^{\infty}\left[\frac{3}{k(k+1)}+\frac{1}{2^{k}}\right]$ is

$$
\sum_{k=1}^{\infty}\left[\frac{3}{k(k+1)}+\frac{1}{2^{k}}\right]=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} \frac{3}{k}-\sum_{k=1}^{n} \frac{3}{k+1}\right]+\frac{\frac{1}{2}}{1-\frac{1}{2}}=3 \cdot 1+1=4 .
$$

The Integral Test Suppose that f is a continuous, positive, decreasing function on $[1, \infty)$, and let $a_{k}=f(k)$. Then

- the series $\sum_{k=1}^{\infty} a_{k}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent. In other words,
(i) if $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{k=1}^{\infty} a_{k}$ is convergent.
(ii) if $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{k=1}^{\infty} a_{k}$ is divergent.

Proof For each $k=1,2, \ldots$, let $a_{k}=f(k)$ and for each $n=1,2, \ldots$ let

$$
R_{n}=\sum_{k=n+1}^{\infty} a_{k}=\sum_{k=1}^{\infty} a_{k}-\sum_{k=1}^{n} a_{k}=s-s_{n} \quad \text { be the } n^{\text {th }} \text { remainder term. }
$$

Since f is decreasing on $[1, \infty)$, we have

- $a_{k}=f(k) \geq f(x) \geq f(k+1)=a_{k+1}$ for each $x \in[k, k+1]$ and for each $k=1,2, \ldots$,
- $\int_{n}^{\infty} f(x) d x \stackrel{(*)}{\geq} R_{n}=\sum_{k=n+1}^{\infty} a_{k}=a_{n+1}+a_{n+2}+\cdots \stackrel{(+)}{\geq} \int_{n+1}^{\infty} f(x) d x$ for each $n \geq 1$.

Thus

$$
\begin{aligned}
& \int_{1}^{\infty} f(x) d x \text { is convergent } \stackrel{\text { def }}{\Longleftrightarrow} \lim _{n \rightarrow \infty} \int_{n}^{\infty} f(x) d x=0, \\
\stackrel{(+)}{(*)} & \lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} a_{k}=0 \stackrel{\text { def }}{\Longleftrightarrow} \sum_{k=1}^{\infty} a_{k} \text { is convergent. }
\end{aligned}
$$

Examples

1. The p-series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.
2. Test the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ for convergence or divergence.
3. Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.
[Note that if $f(x)=\frac{\ln x}{x}, x \geq 1$, then $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}<0$ for $x>e$, and $f(x)$ is positive, decreasing on $[e, \infty)$.]
4.

(a) Approximate the sum of the series $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ by using the sum of the first 10 terms. Estimate the error involved in this approximation.
[Solution: $s_{10} \approx 1.1975$ and since $R_{10}=s-s_{10} \stackrel{(*)}{\leq} \int_{10}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{200}=0.005$, the size of the error is at most 0.005 .]
(b) How many terms are required to ensure that the sum is accurate to within 0.0005 ? [Solution: Accuracy to within 0.0005 means that we have to find a value of n such that $R_{n} \leq 0.0005$. Since $R_{n} \stackrel{(*)}{\leq} \int_{n}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{2 n^{2}}$, we want $\frac{1}{2 n^{2}}<0.0005 \Longrightarrow n^{2}>1000$ or $n>\sqrt{1000} \approx 31.6$. So we need 32 terms to ensure accuracy to within 0.0005.]
5. Note that if we add s_{n} to each side of estimates $(*),(\dagger)$ for the remainder $R_{n}=s-s_{n}$, we get a lower bound and an upper bound for s.
$s_{n}+\int_{n}^{\infty} f(x) d x \geq s_{n}+R_{n}=s \geq s_{n}+\int_{n+1}^{\infty} f(x) d x \Longrightarrow \int_{n}^{\infty} f(x) d x \geq s-s_{n} \geq \int_{n+1}^{\infty} f(x) d x$.

The Comparison Tests

- (The Direct Comparison Test) Suppose that $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are series with positive terms.
(a) If $\sum_{k=1}^{\infty} b_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} b_{k}$ is convergent and $a_{k} \leq b_{k}$ for all k, then $\sum_{k=1}^{\infty} a_{k}$ is also convergent.
(b) If $\sum_{k=1}^{\infty} b_{k}$ is divergent and $a_{k} \geq b_{k}$ for all k, then $\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}$ is also divergent.
- (The Limit Comparison Test) Suppose that $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are series with positive terms.
(a) If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=r \in(0, \infty)$, then either both series converge or both diverge.
(b) If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0$ and if $\sum_{k=1}^{\infty} b_{k}$ is convergent, then $\sum_{k=1}^{\infty} a_{k}$ is convergent.
(c) If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\infty$ and if $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\sum_{k=1}^{\infty} b_{k}$ is convergent.

Examples

1. Determine whether the series $\sum_{k=1}^{\infty} \frac{5}{2 k^{2}+4 k+3}$ converges or diverges.
2. Test the series $\sum_{k=1}^{\infty} \frac{1}{2^{k}-1}$ for convergence or divergence.
3. Determine whether the series $\sum_{k=1}^{\infty} \frac{2 k^{2}+3 k}{\sqrt{5+k^{5}}}$ converges or diverges.
4. Use the sum of the first 100 terms to approximate the sum of the series $\sum_{k=1}^{\infty} \frac{1}{k^{3}+1}$. Estimate the error involved in this approximation.
[Solution: Let

$$
R_{n}=\sum_{k=n+1}^{\infty} \frac{1}{k^{3}+1}, \quad T_{n}=\sum_{k=n+1}^{\infty} \frac{1}{k^{3}} \leq \int_{n}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{2 n^{2}} .
$$

Then $\left.R_{100} \stackrel{(*)}{\leq} \int_{100}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{2(100)^{2}}=0.00005.\right]$

Alternating Series and Absolute Convergence

An alternating series is a series whose terms are alternately positive and negative. The following test says that if the terms of an alternating series decrease toward 0 in absolute value, then the series converges.

Alternating Series Test

- If $b_{k}>0, b_{k} \geq b_{k+1}$ for all $k \geq 1$ and
- if $\lim _{k \rightarrow \infty} b_{k}=0$,
then the alternating series

$$
\sum_{k=1}^{\infty}(-1)^{k-1} b_{k}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots \quad \text { is convergent. }
$$

Furthermore,

- if $\sum_{k=1}^{\infty}(-1)^{k-1} b_{k}=s \in \mathbb{R}$, i.e. the alternating series converges to $s \in \mathbb{R}$, and
- if $R_{n}=s-s_{n}=\sum_{k=n+1}^{\infty}(-1)^{k-1} b_{k}$,
then for each $n=1,2, \ldots$ we have

$$
\begin{aligned}
\left|R_{n}\right| & =\left|s-s_{n}\right| \\
& =\left(b_{n+1}-b_{n+2}\right)+\left(b_{n+3}-b_{n+4}\right)+\left(b_{n+5}-b_{n+6}\right)+\cdots \\
& =b_{n+1}-\left(b_{n+2}-b_{n+3}\right)-\left(b_{n+4}-b_{n+5}\right)-\cdots \\
& \leq b_{n+1} \quad \text { since } b_{n+k}-b_{n+k+1} \geq 0 \text { for all } k \geq 2 .
\end{aligned}
$$

Examples

1. The alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ is convergent by the Alternating Series Test.
2. The alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k} 3 k}{4 k-1}$ is divergent since $\lim _{k \rightarrow \infty} \frac{3 k}{4 k-1}=\frac{3}{4} \neq 0$.
3. Determine the convergence of the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k^{2}}{k^{3}+1}$.
4. Find the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}$ correct to three decimal places.
[Solution: First observe that the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}$ is convergent by the Alternating Series Test. Since $b_{7}=\frac{1}{7!}=\frac{1}{5040}<\frac{1}{5000}=0.0002$ and $s_{6}=\sum_{k=0}^{6} \frac{(-1)^{k}}{k!} \approx 0.368056$, so we have $s \approx 0.368$ correct to three decimal places.]

Definitions

- A series $\sum a_{k}$ is called absolutely convergent if the series of absolute values $\sum\left|a_{k}\right|$ is convergent.
- A series $\sum a_{k}$ is called conditionally convergent if it is convergent but not absolutely convergent; that is, if $\sum a_{k}$ converges but $\sum\left|a_{k}\right|$ diverges.

Theorem If a series $\sum a_{k}$ is absolutely convergent, then it is convergent.
Proof Since $\sum a_{k}$ is absolutely convergent and $\left|R_{n}\right| \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right|$ for all n, we have $0 \leq$ $\lim _{n \rightarrow \infty}\left|R_{n}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty}\left|a_{k}\right|=0 \Longrightarrow \lim _{n \rightarrow \infty}\left|R_{n}\right|=0$. Hence, the series $\sum a_{k}$ is convergent.

Examples

1. The alternating series $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{2}}$ is absolutely convergent since $\sum_{k=1}^{\infty}\left|\frac{(-1)^{k-1}}{k^{2}}\right|=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ is a convergent p-series $(p=2>1)$.
2. The alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ is conditionally convergent since $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ is convergent by the Alternating Series Test and $\sum_{k=1}^{\infty}\left|\frac{(-1)^{k-1}}{k}\right|=\sum_{k=1}^{\infty} \frac{1}{k}$ is a divergent p-series.
3. Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$ is convergent or divergent.
[Solution: Since $\left|\frac{\cos n}{n^{2}}\right| \leq \frac{1}{n^{2}}$ for all n and since the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$ is absolutely convergent by the Comparison Test, and hence it is convergent.]
4. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. (a) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}}$, (b) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt[3]{k}}$, (c) $\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{2 k+1}$

Definition By a rearrangement of an infinite series $\sum a_{k}$ we mean a series obtained by simply changing the order of the terms. For instance, a rearrangement of $\sum a_{k}$ could start as follows:

$$
a_{1}+a_{2}+a_{5}+a_{3}+a_{4}+a_{10}+a_{6}+a_{7}+a_{15}+\cdots
$$

It turns out that if $\sum a_{k}$ is absolutely convergent series with sum s, then any rearrangement of $\sum a_{k}$ has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. To illustrate this fact let's consider the alternating harmonic series

$$
\text { (*) } \quad 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots=s=\ln 2,
$$

where we assume that $\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{k}}{k}$ for $-1<x \leq 1$. If we multiply by $\frac{1}{2}$, we get

$$
\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\cdots=\frac{1}{2} s=\frac{1}{2} \ln 2
$$

Inserting zeros between the terms of this series, we have
(\dagger) $0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8}+\cdots=\frac{1}{2} s=\frac{1}{2} \ln 2$
Now we add the series in $(*)$ and (\dagger) :

$$
(* *) \quad 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\cdots=\frac{3}{2} s=\frac{3}{2} \ln 2
$$

Notice that the series in ($* *$) contains the same terms as in $(*)$ but rearranged so that one negative term occurs after each pair of positive terms. The sums of these series, however, are different. In fact, Riemann proved that

- if $\sum a_{k}$ is a conditionally convergent series and r is any real number whatsoever, then there is a rearrangement of $\sum a_{k}$ that has a sum equal to r.

The Ratio and Root Tests

The Ratio Test Suppose that $a_{k} \neq 0$ for all $k=1,2, \ldots$.
(i) If $\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=L<1$, then the series $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=L>1$ or $\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=\infty$, then the series $\sum_{k=1}^{\infty} a_{k}$ is divergent.
(iii) If $\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{k=1}^{\infty} a_{k}$.

Examples

1. Test the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3}}{3^{n}}$ for absolute convergence.
2. Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{n!}$.
3. Determine the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)!}$.
4. Determine the convergence of $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

The Root Test

(i) If $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=L<1$, then the series $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=L>1$ or $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=\infty$, then the series $\sum_{k=1}^{\infty} a_{k}$ is divergent.
(iii) If $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=1$, the Root Test is inconclusive.

Examples

1. Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$.
2. Determine whether the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$ converges or diverges.

Strategy for Testing Series

Examples In the following examples, don't work out all the details but simply indicate which tests should be used.

1. $\sum_{n=1}^{\infty} \frac{n-1}{2 n+1}$ [Solution: Use the Test for Divergence.]
2. $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+1}}{3 n^{3}+4 n^{2}+2}$ [Solution: Use the Limit Comparison Test.]
3. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{4}+1}$ [Solution: Use the Alternating Series Test. We can also observe that the series converges absolutely and hence converges.]
4. $\sum_{k=1}^{\infty} \frac{2^{k}}{k!}$ [Solution: Use the Ratio Test.]
5. $\sum_{n=1}^{\infty} \frac{1}{2+3^{n}}$ [Solution: Use the Comparison or the Limit Comparison Test.]

Power Series

Definition A power series in x is a series of the form

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} x^{k}
$$

where x is a variable and the a_{k} 's are constants called the coefficients of the series.
For each number that we substitute for x, the series is a series of constants that we can test for convergence or divergence. A power series may converge for some values of x and diverge for other values of x.
The sum of the power series is a function

$$
s(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\cdots=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} x^{k}
$$

whose domain is the set of all x for which the series converges. Notice that $s(x)$ resembles a polynomial. The only difference is that $s(x)$ has infinitely many terms.
More generally, a series of the form

$$
\sum_{k=0}^{\infty} a_{k}(x-a)^{k}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}(x-a)^{k}
$$

is called a power series in $(x-a)$ or a power series centered at a or a power series about a.
Proposition Suppose that $a_{k} \neq 0$ for all $k=1,2, \ldots$, and for a fixed point $x \neq a$, suppose that

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}(x-a)^{k}\right|}=\left(\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}\right)|x-a|=L<1 \quad \text { or } \quad\left(\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}\right)|x-a|=L<1
$$

Then $\sum_{k=1}^{\infty} a_{k}(y-a)^{k}$ is absolutely convergent for all $|y-a| \leq|x-a|$.
Theorem For a power series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$, there are only three possibilities:
(1) The series converges only when $x=a$.
(2) The series converges for all x.
(3) There is a positive number R, called the radius of convergence of the power series, such that

$$
\begin{aligned}
& -\sum_{k=0}^{\infty} a_{k}(x-a)^{k} \text { converges if }|x-a|<R \text { and } \\
& -\sum_{k=0}^{\infty} a_{k}(x-a)^{k} \text { diverges if }|x-a|>R
\end{aligned}
$$

By convention,

- the radius of convergence is $R=0$ in case (1) and
- $R=\infty$ in case (2).

The interval of convergence of a power series is the interval that consists of all values of x for which the series converges.

- In case (1), the interval consists of just a single point a.
- In case (2), the interval is $(-\infty, \infty)$.
- In case (3), the interval is one of $(a-R, a+R),[a-R, a+R),(a-R, a+R]$ or $[a-R, a+R]$.

Proposition (radius of convergence) Suppose that $a_{k} \neq 0$ for all $k=1,2, \ldots$, and suppose that

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=L \quad \text { or } \quad \lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=L \quad \text { for some } \quad 0 \leq L \leq \infty
$$

Then the radius of convergence R of the power series $\sum_{k=1}^{\infty} a_{k}(x-a)^{k}$ is given by
(i) $R=1 / L$ if $0<L<\infty$.

Proof Since

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}(x-a)^{k}\right|}=\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right| \mid} x-a \left\lvert\, \begin{cases}<L \cdot 1 / L=1 & \text { for each }|x-a|<R=1 / L \\ >L \cdot 1 / L=1 & \text { for each }|x-a|>R=1 / L\end{cases}\right.
$$

or
$\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}(x-a)^{k+1}\right|}{\left|a_{k}(x-a)^{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}|x-a| \begin{cases}<L \cdot 1 / L=1 & \text { for each } 0<|x-a|<R=1 / L, \\ >L \cdot 1 / L=1 & \text { for each }|x-a|>R=1 / L,\end{cases}$
so $\sum_{k=1}^{\infty} a_{k}(x-a)^{k}$

- converges for each $|x-a|<R=1 / L$,
- diverges for each $|x-a|>R=1 / L$,
and $R=1 / L$ is the radius of convergence of the power series $\sum_{k=1}^{\infty} a_{k}(x-a)^{k}$.
(ii) $R=\infty$ if $L=0$.
(iii) $R=0$ if $L=\infty$.

Examples

1. For what values of x is the series $\sum_{n=0}^{\infty} x^{n}$ convergent?
[Solution: By the Ratio Test and the Divergence Test, the series converges (absolutely) only when $|x|<1$.]
2. For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$ convergent?
[Solution: By the Ratio Test, the Alternating Series Test and the p-series Test, the series converges only when $2 \leq x<4$.]
3. For what values of x is the series $\sum_{n=0}^{\infty} n!x^{n}$ convergent?
[Solution: By the Ratio Test, the series converges only when $x=0$.]
4. For what values of x is the series $\sum_{n=0}^{\infty} \frac{x^{n}}{(2 n)!}$ convergent?
[Solution: By the Ratio Test, the series converges (absolutely) when $x \in(-\infty, \infty)$.]

Representations of Functions as Power Series

Examples

1. Since the power series $\sum_{k=0}^{\infty} x^{k}$ converges absolutely for $|x|<1$, and since

$$
\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} x^{k}=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}=\frac{1}{1-x} \quad \text { for }|x|<1,
$$

we say that $\sum_{k=0}^{\infty} x^{k}$, is a power series representation of $\frac{1}{1-x}$ for $x \in(-1,1)$.
2. Express $\frac{1}{1+x^{2}}$ as the sum of a power series and find the interval of convergence.
[Solution: $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{k=0}^{\infty}\left(-x^{2}\right)^{k}$ converges for $\left|-x^{2}\right|<1 \Longleftrightarrow|x|<1$]

Differentiation and Integration of Power Series

Theorem If the power series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots
$$

is differentiable (and therefore continuous) and
(i) $f^{\prime}(x)=\frac{d}{d x} \sum_{k=0}^{\infty} a_{k}(x-a)^{k}=\sum_{k=0}^{\infty} \frac{d}{d x}\left[a_{k}(x-a)^{k}\right]=\sum_{k=1}^{\infty} k a_{k}(x-a)^{k-1}$ for each $x \in(a-R, a+R)$,
(ii) $\int f(x) d x=\int \sum_{k=0}^{\infty} a_{k}(x-a)^{k} d x=\sum_{k=0}^{\infty} \int a_{k}(x-a)^{k} d x=C+\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}(x-a)^{k+1}$ on the interval $(a-R, a+R)$.
(iii) the radii of convergence of $\sum_{k=1}^{\infty} k a_{k}(x-a)^{k-1}$ and $\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}(x-a)^{k+1}$ are both R,
(iv) f has derivatives of all order $n=0,1,2 \ldots$ on $(a-R, a+R)$ and for each $x \in(a-R, a+R)$,

$$
f^{(n)}(x)=\frac{d^{n}}{d x^{n}} \sum_{k=0}^{\infty} a_{k}(x-a)^{k}=\sum_{k=0}^{\infty} \frac{d^{n}}{d x^{n}}\left[a_{k}(x-a)^{k}\right]=\sum_{k=n}^{\infty} k(k-1) \cdots(k-n+1) a_{k}(x-a)^{k-n} .
$$

Examples

1. Express $\frac{1}{(1-x)^{2}}$ as a power series by differentiating the Equation $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. What is the radius of convergence?
[Solution: Since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$, and by differentiating both sides, we get

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n} \quad \text { for }|x|<1
$$

Since $\lim _{n \rightarrow \infty}(n+1)^{1 / n}=1$, the radius of convergence $R=1$.]
2. Express $\tan ^{-1} x$ as a power series by integrating the equation $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$. What is the radius of convergence?
[Solution: For $|x|<1$, since

$$
\begin{aligned}
\tan ^{-1} x & =\left.\tan ^{-1} z\right|_{0} ^{x}=\int_{0}^{x} \frac{1}{1+z^{2}} d z \\
& =\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} z^{2 n} d z=\sum_{n=0}^{\infty} \int_{0}^{x}(-1)^{n} z^{2 n} d z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
\end{aligned}
$$

and since $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$ converges when $x= \pm 1$, we have

$$
\left.\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \quad \text { for all }|x| \leq 1 .\right]
$$

Examples (from Section 17.4)

1. Use power series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ to solve the equation $y^{\prime}=r y$, where r is a constant.

$$
\begin{aligned}
& 0=y^{\prime}-r y=\sum_{n=1}^{\infty} n c_{n} x^{n-1}-\sum_{n=0}^{\infty} r c_{n} x^{n}=\sum_{n=0}^{\infty}\left[(n+1) c_{n+1}-r c_{n}\right] x^{n} \\
\Longrightarrow \quad & c_{n+1}=\frac{r c_{n}}{n+1} \text { for } n=0,1,2, \ldots(\text { called a recursive relation }) \\
\Longrightarrow \quad & c_{n+1}=\frac{r c_{n}}{n+1}=\frac{r^{2} c_{n-1}}{(n+1) n}=\cdots=\frac{r^{n+1} c_{0}}{(n+1)!} \\
\Longrightarrow \quad & y=c_{0} \sum_{n=0}^{\infty} \frac{r^{n}}{n!} x^{n}=c_{0} e^{r x}
\end{aligned}
$$

2. Use power series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ to solve the equation $y^{\prime \prime}+r y=0$, where $r>0$ is a constant.

$$
\begin{aligned}
0= & y^{\prime \prime}+r y=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} r c_{n} x^{n}=\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}+r c_{n}\right] x^{n} \\
\Longrightarrow \quad & c_{n+2}=\frac{-r c_{n}}{(n+2)(n+1)} \quad \text { for } n=0,1,2, \ldots \text { (called a recursive relation) }
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow \quad & c_{2 n}=\frac{(-r) c_{2 n-2}}{(2 n)(2 n-1)}=\frac{(-r)^{2} c_{2 n-4}}{(2 n)(2 n-1)(2 n-2)(2 n-3)}=\cdots=\frac{(-r)^{n} c_{0}}{(2 n)!}, \quad n=0,1,2, \ldots \\
& c_{2 n+1}=\frac{(-r) c_{2 n-1}}{(2 n+1)(2 n)}=\frac{(-r)^{2} c_{2 n-3}}{(2 n+1)(2 n)(2 n-1)(2 n-2)}=\cdots=\frac{(-r)^{n} c_{1}}{(2 n+1)!} \quad n=0,1,2, \ldots \\
\Longrightarrow \quad & y=c_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n} r^{n}}{(2 n)!} x^{2 n}+c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} r^{n}}{(2 n+1)!} x^{2 n+1}=c_{0} \cos \sqrt{r} x+c_{1} \sin \sqrt{r} x
\end{aligned}
$$

3. Show that $J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}$, the Bessel function of order 0 , is a solution of the Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$.
If $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, then $x^{2} y=\sum_{n=0}^{\infty} c_{n} x^{n+2}$, and

$$
\begin{aligned}
& y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2} \\
& \Longrightarrow \quad x y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n}, \quad x^{2} y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n} \\
& \Longrightarrow \quad x y^{\prime}=c_{1} x+\sum_{n=2}^{\infty} n c_{n} x^{n}, \quad x^{2} y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n} \\
& \text { set } \underset{\substack{k=n-2 \\
n=k+2}}{\text { set }} \quad x y^{\prime}=c_{1} x+\sum_{k=0}^{\infty}(k+2) c_{k+2} x^{k+2}, \quad x^{2} y^{\prime \prime}=\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k+2} \\
& \Longrightarrow \quad x y^{\prime}=c_{1} x+\sum_{n=0}^{\infty}(n+2) c_{n+2} x^{n+2}, \quad x^{2} y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) c_{n+2} x^{n+2} \\
& \Longrightarrow \quad 0=x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=c_{1} x+\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}+(n+2) c_{n+2}+c_{n}\right] x^{n+2} \\
& \Longrightarrow \quad 0=c_{1} x+\sum_{n=0}^{\infty}\left[(n+2)^{2} c_{n+2}+c_{n}\right] x^{n+2} \\
& \Longrightarrow \quad c_{1}=0, \quad c_{n+2}=\frac{(-1) c_{n}}{(n+2)^{2}} \text { for } n=0,1,2, \ldots(\text { called a recursive relation }) \\
& \Longrightarrow \quad c_{2 n+1}=0, c_{2 n}=\frac{(-1) c_{2 n-2}}{(2 n)^{2}}=\frac{(-1)^{2} c_{2 n-4}}{\left[2^{2} n^{2}\right]\left[2^{2}(n-1)^{2}\right]}=\cdots=\frac{(-1)^{n} c_{0}}{2^{2 n}(n!)^{2}} \quad \text { for } n=0,1,2, \ldots \\
& \Longrightarrow \quad y=c_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}} \operatorname{set} \underline{\underline{c_{0}}=1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}=J_{0}(x) .
\end{aligned}
$$

(a) Find the domain of $J_{0}(x)$. [Solution: By the Ratio Test, the series converges for all values of x. In other words, the domain of the Bessel function J_{0} is $(-\infty, \infty)$.]
(b) Find the derivative of $J_{0}(x)$. [Solution: $J_{0}^{\prime}(x)=\sum_{n=0}^{\infty} \frac{d}{d x} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n) x^{2 n-1}}{2^{2 n}(n!)^{2}}$.]

Taylor and Maclaurin Series

Taylor's Theorem If $f(x)$ has derivatives of all orders in an open interval $I=(a-R, a+R)$ containing a, then for each positive integer n and for each $x \in I$,

$$
f(x)=P_{n}(x)+R_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t,
$$

where $f^{(k)}(a)=\frac{d^{k} f}{d x^{k}}(a)$ is the $k^{\text {th }}$ derivative of f at a for $k \geq 1, f^{(0)}(a)=f(a)$, and

- $P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{1}{n!} \frac{d^{n} f}{d x^{n}}(a)(x-a)^{n}$ is called the $n^{\text {th }}$-degree Taylor polynomial of f at a
- $R_{n}(x)=f(x)-P_{n}(x)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t$ is called the remainder of order n for the approximation of $f(x)$ by $P_{n}(x)$ over I.
Proof Using integration by parts formula $\int_{a}^{x} u d v=\left.u v\right|_{a} ^{x}-\int_{a}^{x} v d u$ repeatedly, we get

$$
\begin{aligned}
f(x)-f(a) & =\int_{a}^{x} f^{\prime}(t) d t=-\int_{a}^{x} f^{\prime}(t) d(x-t), \quad u=f^{\prime}(t), d v=-d(x-t) \\
& =-\left.f^{\prime}(t)(x-t)\right|_{a} ^{x}+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t \\
& =f^{\prime}(a)(x-a)-\frac{1}{2!} \int_{a}^{x} f^{\prime \prime}(t) d(x-t)^{2}, \quad u=f^{\prime \prime}(t), d v=-\frac{d(x-t)^{2}}{2!} \\
& =f^{\prime}(a)(x-a)-\left.\frac{1}{2!} f^{\prime \prime}(t)(x-t)^{2}\right|_{a} ^{x}+\frac{1}{2!} \int_{a}^{x} f^{\prime \prime \prime}(t)(x-t)^{2} d t \\
& =f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}-\frac{1}{3!} \int_{a}^{x} f^{\prime \prime \prime}(t) d(x-t)^{3} \\
& \cdots \\
& \stackrel{(*)}{=} \quad f^{\prime}(a)(x-a)+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}+\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t
\end{aligned}
$$

The Remainder Estimation Theorem If there exists a positive constant such that $\left|f^{(n+1)}(x)\right| \leq$ M for all $|x-a| \leq R$, then the remainder term $R_{n}(x)$ in Taylor's Theorem satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for }|x-a| \leq R .
$$

Proof Taylor's Theorem implies that

$$
\left|R_{n}(x)\right| \stackrel{(*)}{=}\left|f(x)-P_{n}(x)\right| \leq \frac{1}{n!}\left|\int_{a}^{x}\right| f^{(n+1)}(t)\left|(x-t)^{n} d t\right| \leq \frac{M}{(n+1)!}\left|(x-t)^{n+1}\right|{ }_{a}^{x}\left|=\frac{M}{(n+1)!}\right| x-\left.a\right|^{n+1} .
$$

Lagrange Remainder In fact, since $f^{(n+1)}(x)$ is continuous for each $|x-a|<R$ and by the Mean Value Theorem for an integral, there exists a c between a and x such that

$$
\begin{aligned}
R_{n}(x) & \stackrel{(*)}{=} f(x)-P_{n}(x)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t=\frac{-1}{(n+1)!} \int_{a}^{x} f^{(n+1)}(t) d(x-t)^{n+1} \\
& =\frac{-f^{(n+1)}(c)}{(n+1)!} \int_{a}^{x} d(x-t)^{n+1} d t=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
\end{aligned}
$$

Theorem If $\lim _{n \rightarrow \infty} R_{n}(x)=0$ for each $|x-a|<R$, then f has a power series expansion at a, that is

$$
f(x)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \quad \text { for each }|x-a|<R,
$$

where the series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ is called the Taylor series of the function f at a (or about a or centered at a).
In case $a=0$, the Taylor series becomes

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \quad \text { for }|x|<R
$$

and it is called the Maclaurin series of f.

Examples

1. Find the Maclaurin series of the function $f(x)=\frac{1}{1 \mp x}$ and its radius of convergence. [Solution: $\frac{1}{1 \mp x}=\sum_{n=0}^{\infty}(\pm x)^{n}$ and $R=1$ by the Ratio Test.]
2. Find the Maclaurin series of the function $f(x)=e^{x}$ and its radius of convergence.
[Solution: $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ and $R=\infty$ by the Ratio Test.]
3. Find the Maclaurin series of the function $f(x)=\sin x$ and its radius of convergence.
[Solution: $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ and $R=\infty$ by the Ratio Test.]
4. Find the Maclaurin series of the function $f(x)=\cos x$ and its radius of convergence.
[Solution: $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ and $R=\infty$ by the Ratio Test.]
5. Find the Maclaurin series of the function $f(x)=\tan ^{-1} x$ and its radius of convergence.
[Solution: $\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ and $R=1$ by the Ratio Test.]
6. Find the Maclaurin series of the function $f(x)=\ln (1+x)$ and its radius of convergence.
[Solution: $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1}$ and $R=1$ by the Ratio Test.]
7. Find the Maclaurin series of the function $f(x)=(1+x)^{k}$ and its radius of convergence.
[Solution: $(1+x)^{k}=\sum_{n=0}^{k}\binom{k}{n} x^{n}$ and $R=1$ by the Ratio Test.]
8. Find the Maclaurin series for (a) $f(x)=x \cos x$ and (b) $f(x)=\ln \left(1+3 x^{2}\right)$.
[Solution: $x \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n)!}$ and $\ln \left(1+3 x^{2}\right)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{3^{n} x^{2 n}}{n}=\sum_{k=0}^{\infty}(-1)^{k} \frac{3^{k+1} x^{2 k+2}}{k+1}$]
9. Find the first three nonzero terms in the Maclaurin series for $(a) e^{x} \sin x$ and (b) $\tan x$.
[Solution: $(a) x+x^{2}+\frac{1}{3} x^{3}+\cdots$; (b) $x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots$]

Examples

(a) Approximate the function $f(x)=\sqrt[3]{x}$ by a Taylor polynomial of degree 2 at $a=8$.
[Solution: $T_{2}(x)=2+\frac{1}{12}(x-8)-\frac{1}{288}(x-8)^{2}$.]
(b) How accurate is this approximation when $7 \leq x \leq 9$?
[Solution: Because $x \geq 7$, we have $x^{8 / 3} \geq 7^{8 / 3}$ and so

$$
\left.f^{\prime \prime \prime}(x)=\frac{10}{27} \cdot \frac{1}{x^{8 / 3}} \leq \frac{10}{27} \cdot \frac{1}{7^{8 / 3}}<0.0021 \Longrightarrow\left|R_{2}(x)\right| \leq \frac{0.0021}{3!}|x-8|^{3}<0.0004 .\right]
$$

Some Proofs

(a) (The Direct Comparison Test) Suppose that $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are series with positive terms. If $\sum_{k=1}^{\infty} b_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} b_{k}$ is convergent and $a_{k} \leq b_{k}$ for all k, then $\sum_{k=1}^{\infty} a_{k}$ is also convergent.
Proof Since $\sum_{k=1}^{\infty} b_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} b_{k}$ is convergent,
$0=\lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} b_{k} \geq \lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} a_{k} \geq 0 \Longrightarrow \lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} a_{k}=0 \quad$ by the squeeze theorem, and that $\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}$ is convergent.
(b) (The Limit Comparison Test) Suppose that $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are series with positive terms.

- If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=r \in(0, \infty)$, then either both series converge or both diverge.

Proof Let $\varepsilon=\frac{r}{2}>0$. Since $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=r \in(0, \infty)$, there is an $M \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left|\frac{a_{k}}{b_{k}}-r\right|<\varepsilon=\frac{r}{2} \quad \text { for all } k \geq M \\
\Longleftrightarrow & -\frac{r}{2}<\frac{a_{k}}{b_{k}}-r<\frac{r}{2} \Longleftrightarrow \frac{r}{2}<\frac{a_{k}}{b_{k}}<\frac{3 r}{2} \quad \text { for all } k \geq M \\
\Longleftrightarrow & \frac{r}{2} b_{k}<a_{k}<\frac{3 r}{2} b_{k} \text { for all } k \geq M . \\
\Longrightarrow & 0<\frac{r}{2} \sum_{k=n}^{\infty} b_{k}<\sum_{k=n}^{\infty} a_{k}<\frac{3 r}{2} \sum_{k=n}^{\infty} b_{k} \quad \text { for all } n \geq M
\end{aligned}
$$

- If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0$ and if $\sum_{k=1}^{\infty} b_{k}$ is convergent, then $\sum_{k=1}^{\infty} a_{k}$ is convergent.

Proof Since $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0$, there is an $M \in \mathbb{N}$ such that

$$
\begin{array}{ll}
& 0<\frac{a_{k}}{b_{k}}=\left|\frac{a_{k}}{b_{k}}-0\right|<1 \quad \text { for all } k \geq M \Longleftrightarrow 0<\frac{a_{k}}{b_{k}}<1 \quad \text { for all } k \geq M \\
\Longleftrightarrow & 0<a_{k}<b_{k} \text { for all } k \geq M . \Longrightarrow 0<\sum_{k=n}^{\infty} a_{k}<\sum_{k=n}^{\infty} b_{k} \quad \text { for all } n \geq M
\end{array}
$$

- If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\infty$ and if $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\sum_{k=1}^{\infty} b_{k}$ is convergent.

Proof Since $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\infty$, there is an $M \in \mathbb{N}$ such that $\frac{a_{k}}{b_{k}}>1$ for all $k \geq M$. Thus we have

$$
a_{k}>b_{k} \quad \text { for all } k \geq M \Longrightarrow \sum_{k=n}^{\infty} a_{k}>\sum_{k=n}^{\infty} b_{k}>0 \quad \text { for all } n \geq M
$$

(c) (The Ratio Test) Suppose that $a_{k} \neq 0$ for all $k=1,2, \ldots$, and suppose that $\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=$ $L<1$, then the series $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent (and therefore convergent).
Proof Given $\frac{1-L}{2}>\varepsilon>0$, since $\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=L<1$, there is an $M \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left|\frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}-L\right|<\varepsilon<\frac{1-L}{2} \quad \text { for all } k \geq M \\
\Longrightarrow & \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}<L+\frac{1-L}{2}=\frac{1+L}{2}<1 \quad \text { for all } k \geq M \\
\Longrightarrow & \left|a_{k+1}\right|<\left(\frac{1+L}{2}\right)\left|a_{k}\right| \quad \text { for all } k \geq M \\
\Longrightarrow & \left|a_{k}\right|<\left(\frac{1+L}{2}\right)\left|a_{k-1}\right|<\left(\frac{1+L}{2}\right)^{2}\left|a_{k-2}\right|<\cdots<\left(\frac{1+L}{2}\right)^{k-M}\left|a_{M}\right| \quad \text { for all } k \geq M \\
\Longrightarrow & \sum_{k=n}^{\infty}\left|a_{k}\right| \leq \sum_{k=n}^{\infty}\left(\frac{1+L}{2}\right)^{k-M}\left|a_{M}\right|=\left(\frac{1+L}{2}\right)^{n-M} \cdot \frac{\left|a_{M}\right|}{1-(1+L) / 2} \quad \text { for all } n \geq M
\end{aligned}
$$

(d) (The Root Test) If $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=L<1$, then the series $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent (and therefore convergent).
Proof Given $\frac{1-L}{2}>\varepsilon>0$, since $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=L<1$, there is an $M \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left|\sqrt[k]{\left|a_{k}\right|}-L\right|<\varepsilon \quad \text { for all } k \geq M \\
\Longrightarrow & \sqrt[k]{\left|a_{k}\right|}-L<\varepsilon<\frac{1-L}{2} \quad \text { for all } k \geq M \\
\Longrightarrow & 0 \leq \sqrt[k]{\left|a_{k}\right|} \leq\left(\frac{1+L}{2}\right)<1 \quad \text { for all } k \geq M \\
\Longrightarrow & \left|a_{k}\right| \leq\left(\frac{1+L}{2}\right)^{k} \quad \text { for all } k \geq M
\end{aligned}
$$

Calculus

$$
\Longrightarrow \quad \sum_{k=n}^{\infty}\left|a_{k}\right| \leq \sum_{k=n}^{\infty}\left(\frac{1+L}{2}\right)^{k}=\left(\frac{1+L}{2}\right)^{n} \cdot \frac{1}{1-(1+L) / 2} \quad \text { for all } n \geq M
$$

(e) (Lagrange Remainder) If $f^{(n+1)}(t)$ is continuous on $[a, x]$, then there exists a $c \in[a, x]$ such that

$$
\int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t=f^{(n+1)}(c) \int_{a}^{x}(x-t)^{n} d t=\frac{f^{(n+1)}(c)}{n+1}(x-a)^{n+1}
$$

Proof Since $f^{(n+1)}(t)$ is continuous and $(x-t)^{n} \geq 0$ on $[a, x]$, there exist m and M such that $m \leq f^{(n+1)}(t) \leq M$ for each $t \in[a, x]$ and

$$
\begin{aligned}
& m \int_{a}^{x}(x-t)^{n} d t \leq \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t \leq M \int_{a}^{x}(x-t)^{n} d t \\
\Longrightarrow & m \leq \frac{\int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t}{\int_{a}^{x}(x-t)^{n} d t} \leq M .
\end{aligned}
$$

By the Intermediate Value Theorem, there is a point $c \in[a, x]$ such that

$$
f^{(n+1)}(c)=\frac{\int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t}{\int_{a}^{x}(x-t)^{n} d t} \Longrightarrow \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t=\frac{f^{(n+1)}(c)}{n+1}(x-a)^{n+1} .
$$

