Calculus Study Guide 9 Spring 2022

Sequences, Series, and Power Series

Definition Let {a;}72, be a sequence of real numbers. Then

oo
g ar = aj; +as+az+--- is called an infinite series (or just a series)
k=1
and
n o0
Sy = E ap  is called the n'" partial sum of E ag.
k=1 k=1
(o)
e The series g ar is called convergent if the sequence {s,} is convergent, or equivalently
k=1
[o.¢] o o n
E ay is convergent if lim R, = lim E ap = lim E ai — E a, | =0.
n—oo n—o0 n—o0
k=1 k=n+1 k=1 k=1
o0
e A number s € R is called the sum of the series E ay, if
k=1
n oo o0
s = lim s, = lim g ar = g ap 1.e. g ay is convergent and it conveges to s.

e The series is called divergent if the sequence {s,} is divergent.

Theorems

[e.e] [e.e]
1. If Z ar and Z b, are convergent series, and if ¢ € R, then so are the series

k=1 k=1
o0 oo o
ank, Z(ak + b,) and Z(ak — br),
k=1 k=1 k=1
with respectively
o (o] 0 o0 o o0 o (o]
Sem=cYu Slwrh)=Yar ok amd Y- =Ym -3
k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1
[o.¢]
2. (A Test for Divergence) If lim a; does not exist or if lim aj # 0, then the series Zak is
k—o0 k—o0 =
. =
divergent. Equivalently, if the series Z ay is convergent, then lim a; = 0.
st k—o0

3. (Geometric Series) If r # 1 is a real number, then the geometric series

r .
T . r —rntl [ converges to if [r] <1,
E r® = lim E r® = lim ———— 11—
k=1 = nieo -7 diverges if [r| > 1.
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Examples

1. Suppose that

- 2
sn:Zak: n foreachn=1, 2, ....
k=

3n+5
Then
= . . 2n 2
Zak: lim s, = lim = —.
n—00 n—oo 3N + H 3
k=1
10 20 40
2. Th f th tri jes 5 — — 4+ 2 24
e sum of the geometric series 3 + 5 o + is
10 20 40 1
5 —m—+ ==+ =5—— = 3.
3+9 27+ 1—(—%)
3. The harmonic series f:l = 1—1—1+1—|—1+ is divergent since
' k27301 &
27’l
1 1 1 1 1 1 1 2 on—1 n
e Z—14( = o e ) > et S — {4
%2 ;k +(2>+<2+1+22)+ +(2n_1+1+ 2n)— ottt T
4. The sum of the series i L—i—i is
' — |k(k+1) 2

1
+—2-=3-1+1=4.
3

The Integral Test Suppose that f is a continuous, positive, decreasing function on [1, 00), and

let ar, = f(k). Then

e the series Z ay is convergent if and only if the improper integral / f(z) dx is convergent.
k=1 1

In other words,

oo o
(i) if / f(x) dzx is convergent, then Z a is convergent.
! k=1

(i) if / f(z) dz is divergent, then Z ay, is divergent.
1 k=1

Proof For each k =1, 2,..., let a = f(k) and for each n =1, 2,... let

o (o.0] n
R, = E ap = ar— Y ap=s—s, bethen'™ remainder term.
k=n+1 k=1 k=1

Since f is decreasing on [1,00), we have
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VA YA
y=flx) y = f(x)
In+1 ) R Ay [ ) -—_-
0 n n+l n+2 T 0 :; n+l n+2 T
o ap, = f(k) > f(x) > f(k+ 1) = agyq for each x € [k;,k:+1] and for each k=1, 2,...,
()
/ flx da7>R Zak:an+1—|—an+2+- > f ) dx for each n > 1.
k=n+1
Thus
f(z)dz is convergent &L im f(z)dz =0,
n—oo n
(%) . . - dof .
<= lim R, = lim ap =0 < ay 1s convergent.
Examples

1
1. The p-series Z w is convergent if p > 1 and divergent if p < 1.

o0
2. Test the series E ] for convergence or divergence.
n
n=1

Inn
3. Determine whether the series Z —— converges or diverges.

n=1

1
[Note that if f(z) = % x> 1, then f'(z) =

decreasing on [e, 00). |

l—lnx

< 0 for z > e, and f(x) is positive,

1
(a) Approximate the sum of the series Z 5] by using the sum of the first 10 terms.
k=1
Estimate the error involved in this approximation.

() [ 1 1
[Solution: s19 &~ 1.1975 and since Rjp = s — 19 < / —dr = = 0.005, the size
o 3 200

of the error is at most 0.005. |
(b) How many terms are required to ensure that the sum is accurate to within 0.00057
[Solution: Accuracy to within 0.0005 means that we have to find a value of n such that

() [ 1 1 1
R,, <0.0005. Since R,, < —dx = ., we want — < 0.0005 = n? > 1000 or
n X3 n? 2n?

1000 ~ 31.6. So we need 32 terms to ensure accuracy to within 0.0005. |
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5. Note that if we add s, to each side of estimates (x), () for the remainder R, = s — s, we
get a lower bound and an upper bound for s.

n+1

sn+/ f(x)dz > sp+R, = s> sn—i—/ fx)dr = / flx)de > s—s, > f(x)d.
n n+1 n

The Comparison Tests

o0 [e.@]
e (The Direct Comparison Test) Suppose that Z aj and Z by are series with positive terms.
k=1 k=1

) If Z b, = lim Z by, is convergent and a; < by, for all k, then Z ay, is also convergent.

n—oo
k: 1 k=1
> =
) If ,; 1 by is divergent and ay > by for all k, then ,; 1 ar = 7111_)1{.10 E ay is also divergent.

e (The Limit Comparison Test) Suppose that Z ay and Z by are series with positive terms.

k=1 k=1
(a) If klim W _ e (0, oo), then either both series converge or both diverge.
—0 Of
(b) If lim 2% = 0 and if bk is convergent, then ay, is convergent.

o0 o
a
(c) If klim £ = 0 and if E ay, is convergent, then E by is convergent.
—00 Of
k=1 k=1

Examples

5

1. Determine whether the series E ——————— converges or diverges.
2
— 2k? + 4k + 3

2. Test the series E for convergence or divergence.

2’“—1

2k + 3k
3. Determine whether the series g = converges or diverges.
Y Ny

1
4. Use the sum of the first 100 terms to approximate the sum of the series Z e Estimate
k=1

the error involved in this approximation.
[Solution: Let

=1
Zk3+1 _Zk?’é/ _dx_QnQ

k=n+1 k=n+1

() [ 1 1
Th < —dr = = 0.00005.
en RIOO ~ / T = 2(100)2 0.0000 ]

oox
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Alternating Series and Absolute Convergence

An alternating series is a series whose terms are alternately positive and negative. The following
test says that if the terms of an alternating series decrease toward 0 in absolute value, then the
series converges.

Alternating Series Test

o If by >0, by > bgyq forall k> 1 and
e if lim b, =0,

k—o0

then the alternating series

Z(—l)k_lbk = b1 - bQ + bg — b4 + b5 — b6 + - is Convergent.
k=1

Furthermore,

o if Z(—l)k_lbk = s € R, i.e. the alternating series converges to s € R, and

o

e if R, =s5—35,= Z (—1)* by,
k=n-+1
then for each n =1, 2,... we have
Ra| = |s— sy
= (bn—i-l - bn+2) + (bn+3 - bn+4) + (bn+5 - bn+6) +oee
= bny1 — (bny2 — bpis) — (bnga — bugs) —
< byy1 since by — byypr1 > 0 forall £ > 2.

Examples
0 _1)k71
1. The alternating harmonic series is convergent by the Alternating Series Test.
k=1
00 )k
3k 3k 3
2. The alternating harmonic series ; 4k — is divergent since li}rrolo -1 1 #0.

o ( )k+1k2
3. Det th f th —_—
etermine € convergence o e series Z k3 I 1

_1)k

4. Find the sum of the series Z correct to three decimal places.

_1)k

(0.9}
[Solution: First observe that the series Z ( is convergent by the Alternating Series

6
- 1 1 1 (—1)*
Test. Since b; = 7= %010 < 5000 0.0002 and sg = ];:0 T 0.368056, so we have

s =~ 0.368 correct to three decimal places.|
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Definitions

e A series E ay, is called absolutely convergent if the series of absolute values E lag| is
convergent.

e A series Zak is called conditionally convergent if it is convergent but not absolutely

convergent; that is, if Z ap converges but Z |ag| diverges.

Theorem If a series Z ay is absolutely convergent, then it is convergent.

Proof Since Zak is absolutely convergent and |R,| < Z lag| for all n, we have 0 <
k=n+1

o
lim |R,| < lim Z lax| =0 = lim |R,| = 0. Hence, the series Z ay is convergent.
n—oo n—oo n—oo

k=n-+1
Examples
; NG ‘ 0 (_1)k—1 >~ 1
1. The alternating series Z BT is absolutely convergent since Z — |- Z = is
a convergent p-series (;::1 2>1). k=1 P
2. The alternating harmonic serics i (_1]2 k_l- is conditionally convergent since io: _(_1—)k_1 is
b=t k=1

—DF N1
(—) = Z z is a divergent p-series.

k=1

o0
convergent by the Alternating Series Test and Z
k=1

o
3. Determine whether the series Z

cosn
n2
n=1

is convergent or divergent.

1 1

o0
cosn ) ) ) ,
< —, for all n and since the p-series E — Is convergent, the series
n n
n=1

[Solution: Since ‘ 5
n
o0

cosn
Z 5 is absolutely convergent by the Comparison Test, and hence it is convergent. |
n

n=1

4. Determine whether the series is absolutely convergent, conditionally convergent, or diver-

e 35 0 S8 0 320

k=1 k=1

Definition By a rearrangement of an infinite series Z a, we mean a series obtained by simply

changing the order of the terms. For instance, a rearrangement of Z ay could start as follows:
a)+ag+as+as+aqg+ayg+ag+ay+aps+---

It turns out that if Z ay is absolutely convergent series with sum s, then any rearrangement of

E ai has the same sum s.

Page 6
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However, any conditionally convergent series can be rearranged to give a different sum. To
illustrate this fact let’s consider the alternating harmonic series

() 1 1+1 1+1 1+1 1+ 2
k R _— —_— = _——— e = § = 1N
2 3 4 5 6 7 8 ’
0 (_1)k71$k . 1
where we assume that In(1 + x) = Z — for —1 < x < 1. If we multiply by 2’ we get
k=1
1 1 n 1 1 n 1 11 5
_ — — - — — e e — — = —|n
24176 8 2772
Inserting zeros between the terms of this series, we have
1 1 1 1 1 1
0O+=-4+0—+04+=-+0——-4+---=-5==1In2
(1) +2+ 4+ +6+ 8—1— 5=

Now we add the series in (x) and (}):

( )1+1 L, i1 3 In2
sk - — - — — e — — — —
3 25 7 41T 1 5" n

Notice that the series in (k%) contains the same terms as in (%) but rearranged so that one
negative term occurs after each pair of positive terms. The sums of these series, however, are
different. In fact, Riemann proved that

o if E ay is a conditionally convergent series and r is any real number whatsoever, then there

is a rearrangement of Z ay that has a sum equal to r.

The Ratio and Root Tests
The Ratio Test Suppose that a # 0 for all k =1,2,....

oo

(i) If klim |C|Lk+‘1| = L < 1, then the series Zak is absolutely convergent (and therefore con-
—00 a’k
k=1
vergent).

[o¢]
(i) If lim 1] =L >1or lim Jax ] = 00, then the series Z ay is divergent.
k—o0 |a’k| k—oo |ak| 1

a
(iii) If klim | ’H’l‘ = 1, the Ratio Test is inconclusive; that is, no conclusion can be drawn about
—00 Q.

oo
the convergence or divergence of E ay.
k=1

Examples

0 —1) 3
1. Test the series Z %

n=1

for absolute convergence.

o0
1
2. Determine the convergence of E -
n!

n=1

Page 7
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0 1)1
3. Determine the convergence of E ﬁ
n—1)!

n=1

e n
. n

4. Determine the convergence of E —-
n!

n=1

The Root Test

(i) If klim V]ar] = L < 1, then the series Z ay is absolutely convergent (and therefore con-
—00
k=1
vergent).

o0
(i) If lim v/|ax| = L > 1 or lim 1/|ax| = oo, then the series Zak is divergent.
k—ro0 k—o0

k=1
(iii) If klim v/ |ax| = 1, the Root Test is inconclusive.
—00

Examples

1. Test the convergence of the series Z <3n + ) .
— \3n+ 2

2

[e.9] 1 n

2. Determine whether the series Z (1 + —) converges or diverges.

n
n=1

Strategy for Testing Series

Examples In the following examples, don’t work out all the details but simply indicate which
tests should be used.

o0

-1
1. ; 27:1 1 [Solution: Use the Test for Divergence.]
2 i _vmtl [Solution: Use the Limit Comparison Test.]
L= 3nd 4+ 4n? +2 ' P '
0 2
3. Z(—l)"4n— [Solution: Use the Alternating Series Test. We can also observe that the
— n*+1
series converges absolutely and hence converges.|
4. Z o [Solution: Use the Ratio Test.]
k=1

— 1
5. ; T3 [Solution: Use the Comparison or the Limit Comparison Test.]

Power Series

Definition A power series in x is a series of the form

oo n
kE_ 2 3 o k
E arr” = ag + a1 + asx® + azx® + -+ = lim E apx”,

Page 8
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where z is a variable and the a;’s are constants called the coefficients of the series.

For each number that we substitute for x, the series is a series of constants that we can test for
convergence or divergence. A power series may converge for some values of x and diverge for
other values of x.

The sum of the power series is a function

0 n

s(z) = E apr® = ag + a1z + agx® + -+ ap’ .- = lim E apaz®

n—oo
k=0 k=0

whose domain is the set of all x for which the series converges. Notice that s(x) resembles a
polynomial. The only difference is that s(z) has infinitely many terms.

More generally, a series of the form

— k: J— J— 2 o0 — 1 — k
kz_oak(x a)’ =ap+a1(x —a) + az(r —a)” + T}l_}n(?o]cz_oak(x a)

is called a power series in (x — a) or a power series centered at a or a power series about a.

Proposition Suppose that a; # 0 for all k = 1,2,..., and for a fixed point x # a, suppose that

kh—>I£l<> ¢ an(z — a)k| = (1}1—{{; {“/|ak|> lt—al=L<1 or (lim |ak+1‘) v —a| =L < 1.

k—o0 |ak|

Then Z ar(y — a)* is absolutely convergent for all |y — a| < |z — al.

k=1
o
Theorem For a power series Z ar(x — a)®, there are only three possibilities:
k=0

(1) The series converges only when = = a.
(2) The series converges for all z.

(3) There is a positive number R, called the radius of convergence of the power series, such that

oo
- Z ap(r — a)* converges if |z — a| < R and

k=0
00

— Z ar(r — a)* diverges if |z — a| > R.

k=0

By convention,
e the radius of convergence is R = 0 in case (1) and
e R =00 in case (2).

The interval of convergence of a power series is the interval that consists of all values of x for
which the series converges.

e In case (1), the interval consists of just a single point a.
e In case (2), the interval is (—o0, 00).

e In case (3), the interval is one of (a— R,a+R), [a—R,a+R), (a—R,a+R] or [a— R, a+ R).

Page 9
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Proposition (radius of convergence) Suppose that a; # 0 for all £k = 1,2,..., and suppose
that

lim v/|lax]| =L or lim M:L for some 0 < L < 0.
k—o00 k—o00 |ak|

Then the radius of convergence R of the power series Z ar(r — a)k is given by
k=1
(i) R=1/Lif0< L < 0.
Proof Since

. , <L-1/L=1 foreach|r—a|]<R=1/L
lim /|ap(x — a)F| = lim /|agl|lz — a ’
k—o0 lax( i k—o0 o] ‘{>L~1/L: 1 foreach |z —a|>R=1/L,

or
. | a1 (z — a)* | . |ak+1’\x—a\ <L-1/L=1 foreachO<|z—a|<R=1/L,
k—oo  |ag(z — a)¥| koo |ay| >L-1/L=1 foreach|x—al]>R=1/L,

oo
SO Z ap(r — a)”
k=1

— converges for each |z —a| < R=1/L,
— diverges for each |z —a] > R=1/L,
and R = 1/L is the radius of convergence of the power series Z ap(r — a).
k=1
(i) R=o0if L =0.

(i) R=0if L = cc.

Examples

1. For what values of x is the series Z x" convergent?
n=0
[Solution: By the Ratio Test and the Divergence Test, the series converges (absolutely) only
when |z] < 1]

00 _ 3
2. For what values of z is the series E u
n

n=1

convergent?

[Solution: By the Ratio Test, the Alternating Series Test and the p-series Test, the series
converges only when 2 < x < 4.]
3. For what values of x is the series Z nlz" convergent?
n=0
[Solution: By the Ratio Test, the series converges only when z = 0.]

[e.9]

T
4. For what values of z is the series Z

n=0 W

[Solution: By the Ratio Test, the series converges (absolutely) when z € (—00,0).]

n
convergent?
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Representations of Functions as Power Series

Examples
o
1. Since the power series Z 2* converges absolutely for |z| < 1, and since
k=0
o n
1— :L,nJrl 1
T ko1 _
Zx —Jl_)lgOZx —nh_)lgo T—e —1-2 for |z] < 1,
k=0 k=0
o0
we say that Z z¥. is a power series representation of for z € (—1,1).
-
k=0

1
2. Express 1

T as the sum of a power series and find the interval of convergence.
x

1 o0
[Solution: 5 = = Z(—xZ)k converges for | — 2% <1 <= |z] < 1]
1+ 1—(—=z p

Differentiation and Integration of Power Series

o

Theorem If the power series Z ax(z — a)* has radius of convergence R > 0, then the function

k=0
f defined by

o

f(iU):Zak(ﬂf—a)k:a0+a1(:p—a)—{—a2($—a)2+...

is differentiable (and therefore continuous) and

d%:[akx—a Zk‘akx—a

Mg

6) fx) = > (e )t =

for each z € (a — R,a + R),

(ii) /f dx—/Zak:c—a dx—Z/aka:—a dx_C+Zk a)F+1

on the interval (¢ — R,a + R).

w
Il

0

o0

(iii) the radii of convergence of Z kap(r —a)*! and Z L a)*1 are both R,

1
k=1
(iv) f has derivatives of all ordern =0, 1, 2... on (a—R, a+R) and for each z € (a— R, a+ R),

dn 0 dn
f™(z) = T Zak(x a)® = Z? ap(x — a)* Zk (k—=1)--- (k—n+1)ag(x—a)" .
k=0 k=0
Examples
1 . . - 1 . .
1. Express —— as a power series by differentiating the Equation = Z x". What is
(1 —x)? l—z

the radius of convergence?

Page 11
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1 [o.¢]
[Solution: Since . = Z z" for || < 1, and by differentiating both sides, we get
—x

1—:,17

an = Z (n+1)z™ for |z| < 1.
n=0

Since lim (n + 1)Y" = 1, the radius of convergence R = 1. ]
n—oo

= Z(—l)”x2n. What

2. Express tan~! z as a power series by integrating the equation

is the radius of convergence?

[Solution: For |z| < 1, since

T
1
tan lz = tan_lz|g:/ dz
0

_ n 2n . n 2n - OO (_1)n 2n+1
= / dz = Z/ dz_;%—Qn—l—lx

o0 _1 n
and since g 2(—+)1x2”+1 converges when x = +1, we have
n
-0

00 —1)"
tan 'z = E 2( +>1x2”“ for all |z| < 1.]
n

n=0
Examples (from Section 17.4)
1. Use power series y = Z cpx” to solve the equation y' = ry, where r is a constant.
n=0
0 = ¢y —ry= chn — Zrcn = Z n+1)cp1 — reg)z”
n=1 n=0
rCp . .
= Cni1 = 1 forn =0,1,2,... (called a recursive relation)
n
. re, r2Ch_1 r"tleg
Cn = = — i — —
T 41 (n+1)n (n+1)!
Tn n rr
e y g CO Z mx = C(]e
2. Use power series y = Z cpx™ to solve the equation y” + ry = 0, where r > 0 is a constant.
n=0
0 = o' +ry= Zn(n —Depz™ 2 + Z re,a’t = Z[(n +2)(n+ 1)cpyo + rey|a™
n=2 n=0 n=0
—TCp . .
— Cnio = forn =0,1,2,... (called a recursive relation)

(n+2)(n+1)
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— )2 _\n
: CQn — ( T)CQ’H—Q — ( T) CQ’IL—4 [ m7 n = O7 ]_7 27 L.
(2n)(2n—1) (2n)(2n —1)(2n —2)(2n — 3) (2n)!
Cont1 = (=r)can = (=r)*can-s == =r)ter , n=0,1,2,...
(2n + 1)(2n) (2n + 1)(2n)(2n —1)(2n —2) (2n + 1)!
— y—coz x2"+ Z o 2"H—c cos /Tx + c1 sin/ra
3. Show that Jy(x Z , the Bessel function of order 0, is a solution of the Bessel

n 0
equat1on o2y + xy + 2ty = O

If y = Z cpx”, then 2%y = Z cpz" %, and
n=0 n=0
(o0 (o)
y = Z nepa™ Y = Z n(n — 1)c,z"?
n=1 n=2

o0 o0
—  ay = E ne,a”, E n(n —1)c,z™
= n=2

o0 o0
—  ay =cx+ Z ne,x”,  xty’ = Z n(n —1)c,z"

n=2 n=2
sotf‘::ng :z:y’ — ¢z + Z(k + 2>Ck+2xk+2’ x2y" — Z(/{ + 2)(k —+ 1)Ck+21‘k+2
n=k+2 k=0 k=0
scgn xy/ =7 + Z(n + 2)Cn+2$n+2, x2y” _ Z(n + 2)(TL + 1)Cn+2$n+2
n=0 n=0

=  0=2%"+ay +2°y=ciz+ Z[(n +2)(n 4+ 1)cpra + (n + 2)cye + cp)z™™
n=0

— 0=rcz+ Z[(ﬂ +2)2Chp0 + cp)z™ T2

(—1)ey,

= c1=0, Cpa= W for n =0,1,2,... (called a recursive relation)
n
(=1)can—2 (—1)2C2n—4 (=1)"c
- Con :O; on = = == forn=0,1,2,...
Cont (2n)2 22n7][22(n — 1)7] gz TS
— y=c Z ooty GO
Yy =co 22n n' — 220 (nl)? 0~/

(a) Find the domain of Jy(z). [Solution: By the Ratio Test, the series converges for all
values of z. In other words, the domain of the Bessel function Jj is (—oo oo) ]

n 2n > ) 2n—1
. . . !
(b) Find the derivative of Jy(x). [Solution: J;( Z o 22n n‘ nz:; 22n mIE ]

Page 13



Calculus Study Guide 9 (Continued)

Taylor and Maclaurin Series

Taylor’s Theorem If f(x) has derivatives of all orders in an open interval [ = (a — R,a + R)
containing a, then for each positive integer n and for each x € I,

") (g
@) = Pua) + Roli) = S o= [ 100 (-0
k=0 ’

n!

where f)(q) = %(a) is the k™ derivative of f at a for k > 1, f(a) = f(a), and
( /! 2 1 d’n
0= Lot = s+ He o e BB o Pl

is called the nth- degree Taylor polynomial of f at a

e R,(z) = f(x) — / Fr( — t)"dt is called the remainder of order n for
the approximation of f ( by P,(x) over I.

Proof Using integration by parts formula / udv = uv|? — / v du repeatedly, we get

fa) =) = [ pod== [ r@yde-o. u=p,do=—de -1

= W=kt [ 0@

= f'(a)(x —a) / () d(z — t)? = f"(t), dv = ——*—
= f’(a)(x—a) () |$ 2|/ f///

1
n!

*

D @@ —a) e+

— "
< .

f(n)(a ‘ o n n'/ jn+1 )ndt

IN

The Remainder Estimation Theorem If there exists a positive constant such that | f*1 (z)|
M for all |z —a| < R, then the remainder term R, (z) in Taylor’s Theorem satisfies the inequality

|Ro(2)] < s

M
CFSL \x—a|”+1 for |x —a| < R.
Proof Taylor’'s Theorem implies that

* 1 * 1 n M il 1 M il
|Rn<a:)|<=)|f(rc)—Pn(:v)|sa / | FD @) (2 —1t) dt‘ gm\@;_t) | = e

Lagrange Remainder In fact, since f"*!(z) is continuous for each |z —a| < R and by the
Mean Value Theorem for an integral, there exists a ¢ between a and = such that

Ra) @ g =) = o [ 500 =0t = o [ @ de -

_ f(n+1) = -
(J;Tn(!@ / d(x — )" df = Mu —a)"*,

N
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Calculus Study Guide 9 (Continued)

Theorem If lim R,(xz) =0 for each |x —a| < R, then f has a power series expansion at a, that
n—oo

is

f(x) = nh_{{.loz f(k;'(a) (x —a)k = i f(kk)'(a) (x —a)* for each |z —a| < R,
= ) k=0 )

f(’“()

where the series Z

k=0
or centered at a).

(z — a)¥ is called the Taylor series of the function f at a (or about a

In case a = 0, the Taylor series becomes

Z FO0) 1 oy L0, F0) o F7O

— 3 DY
k' T o 3 x° + for || < R

and it is called the Maclaurin series of f.

Examples
1
1. Find the Maclaurin series of the function f(z) = = and its radius of convergence.
x
[Solution: = E (£x)" and R =1 by the Ratio Test.]
x
n=0

2. Find the Maclaurin series of the function f(x) = e” and its radius of convergence.
— 1
[Solution: e* = Z —a" and R = oo by the Ratio Test.]

n!
n=0

3. Find the Maclaurin series of the function f(z) = sinz and its radius of convergence.

OO 2n+1
[Solution: sinz = nz:%(—l)”m and R = oo by the Ratio Test.]
4. Find the Maclaurin series of the function f(z) = cosx and its radius of convergence.
[Soluti i( 1)“:62" dR by the Ratio Test.]
olution: cosx = - an = 00 e Ratio Test.
— (2n)! Y
5. Find the Maclaurin series of the function f(z) = tan™'z and its radius of convergence.
o 2n+1
[Solution: tan™'z = Z(—l)” ’ and R = 1 by the Ratio Test.]

2n+1

n=0

6. Find the Maclaurin series of the function f(z) = In (1 + z) and its radius of convergence.

z"
Solution: In(1 = (-t d R =1 by the Ratio Test.
[Solution: In(1 + x) 2 Z k an y the Ratio Test.]
7. Find the Maclaurin series of the function f(z) = (1 + x)* and its radius of convergence.

k
k
[Solution: (14 z)* = Z <n) 2" and R =1 by the Ratio Test.]

n=0
8. Find the Maclaurin series for (a) f(r) = xcosz and (b) f(z) = In(1 + 322).
> 2+l *© 3n 2n > 3k+l,L,2k+2
[Solution: xcosz = HZ:O(—l) @ and In(14327) ; = ko(—l)km]
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9. Find the first three nonzero terms in the Maclaurin series for (a)e”sinz and (b) tan x.

[Solution: (a)$+x2+%x3+---; (b)m+%x3+%x5+--- ]

Examples

(a) Approximate the function f(z) = /z by a Taylor polynomial of degree 2 at a = 8.
1 1

[Solution: Ty(z) =2+ 12( —8) — 588 —(x —8)%]

(b) How accurate is this approximation when 7 < z < 97

[Solution: Because x > 7, we have 2%/3 > 78/3 and so

10 1 10 1 0.0021
"
J"(@) = 52 =5 < 57w < 00021 = [Ra(o)] < —;

|z — 8]* < 0.0004. ]

Some Proofs

(a) (The Direct Comparison Test) Suppose that Zak and Z by, are series with positive

k=1 k=1
t If b, = 1 b t and < by f 11 %k, th 1
erms. Z i n;noloz r is convergent and ay . for a en ;ak is also
convergent
Proof b li b t
roof Since Z k= lm Z © 1S convergent,
[o.¢] o
= 1i i =
Jim Z by, > nh_)rgo Z a, > 0 = 7}1_)120 Z ar = 0 by the squeeze theorem,
k=n+1 k=n+1 k=n-+1

n

and that Z ar = lim Z aj is convergent.

n—00
=1

(b) (The Limit Comparison Test) Suppose that Zak and Zbk are series with positive

k=1 k=1
terms.
o If klim e (0,00), then either both series converge or both diverge.
—00 Of
Proof Let € = g > 0. Since klirn M _ e (0,00), there is an M € N such that
—00 Of
% _pl<e=I forallk>M
by, 2
T ag r rooax 37
= < ——r<z <= < —<— foralk>M
2 b, T2 e 2 =
r 3r
<— §bk<ak < ?bk for all k£ > M.
0<iibk<iak<3—ribk for all n > M.
2 2 -
k=n k=n k=n
o If ICILI& b_k =0 and if Z by is convergent, then Z ay is convergent.

k=1 k=1
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Proof Since lim I _ 0, there is an M € N such that

k:—>oobk
ag ag ag
0<—==|—-0|<1 forallk>M <— 0<—<1 forallk>M
by by by,

= 0<a,<b forallkzM.:>O<Zak<Zbk for all n > M.
k=n k=n

o0 o0
a
o If lim — = oo and if Z ay is convergent, then Z by is convergent.

k—o0 O
k=1 k=1
Proof Since klirn % = o0, there is an M € N such that % > 1 for all £ > M. Thus we
—00 k Lk
have

ar > b, forall k> M — Zak>2bk>0 for all n > M.
k=n k=n

(c) (The Ratio Test) Suppose that a, # 0 for all k = 1,2, ..., and suppose that klim k] _

—00 |ak| o
L < 1, then the series Z ay, is absolutely convergent (and therefore convergent).
k=1
Proof Given > ¢ > 0, since klim ‘TkJr’l‘ = L < 1, there is an M € N such that
—00 Qg
1—-L
@1 —L‘ <e<—= forallk>M
|| 2
1-L 1+1L
awnil 7y — T forallk> M
|ak| 2 2

!

1+ L
lag+1] < (%) lag| for all k > M

1+ L 1+ L\? 1+ L\"™
— Jal < (%) 41| < (%) ] < --- < (%) lan| for all k > M

o8} oo ]_+L k—M 1—|—L n—M |CLM|
— < —_— =— ——————— foralln>M
;|ak|_§< 9 ) |aM| ( 9 > 1—(1+L)/2 or all n >

oo

(d) (The Root Test) If klim V|ax| = L < 1, then the series Zak is absolutely convergent
—00
k=1
(and therefore convergent).

Proof Given

> ¢ > 0, since klim V/|ax| = L < 1, there is an M € N such that
—00

Vax| — L‘ <e forall k> M
) 1-L
— \/|ak|—L<5<T for all k > M
1+ L
— O§k|ak|§(%><1 forall k > M
14+ L\"
— |ak|§<%> for all k > M
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S — ) = : for all n > M
. ;W_;( : ) ( 2 ) s Al

(e) (Lagrange Remainder) If f("*1(t) is continuous on [a, x|, then there exists a ¢ € [a, 2]
such that

= x (n+1) (-
[ 10 -ora= o) [[eopra= 00 g

n+1

Proof Since f™+(t) is continuous and (x —t)" > 0 on [a,x], there exist m and M such
that m < f™*(¢t) < M for each t € [a, x] and

m/ (z —1t) dt</ Fr (¢ —t)"dth/(x—t)"dt

f fn+1 n it
f(:v—t) dt =M

By the Intermediate Value Theorem, there is a point ¢ € [a, x] such that

(n 1) _ fax f(n+1)(t (l’—t n 1 _4\n o f(n-i—l)(c) - n+1
POt = e /f + oy =10 gy,

—
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