
Calculus Study Guide 9 Spring 2022

Sequences, Series, and Power Series

Definition Let {ak}∞k=1 be a sequence of real numbers. Then

∞∑
k=1

ak = a1 + a2 + a3 + · · · is called an infinite series (or just a series)

and

sn =
n∑

k=1

ak is called the nth partial sum of
∞∑
k=1

ak.

� The series
∞∑
k=1

ak is called convergent if the sequence {sn} is convergent, or equivalently

∞∑
k=1

ak is convergent if lim
n→∞

Rn = lim
n→∞

∞∑
k=n+1

ak = lim
n→∞

(
∞∑
k=1

ak −
n∑

k=1

ak

)
= 0 .

� A number s ∈ R is called the sum of the series
∞∑
k=1

ak if

s = lim
n→∞

sn = lim
n→∞

n∑
k=1

ak =
∞∑
k=1

ak i.e.
∞∑
k=1

ak is convergent and it conveges to s.

� The series is called divergent if the sequence {sn} is divergent.

Theorems

1. If
∞∑
k=1

ak and
∞∑
k=1

bk are convergent series, and if c ∈ R, then so are the series

∞∑
k=1

c ak,
∞∑
k=1

(ak + bk) and
∞∑
k=1

(ak − bk),

with respectively

∞∑
k=1

c ak = c
∞∑
k=1

ak,
∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk and
∞∑
k=1

(ak − bk) =
∞∑
k=1

ak −
∞∑
k=1

bk.

2. (A Test for Divergence) If lim
k→∞

ak does not exist or if lim
k→∞

ak ̸= 0, then the series
∞∑
k=1

ak is

divergent. Equivalently, if the series
∞∑
k=1

ak is convergent, then lim
k→∞

ak = 0.

3. (Geometric Series) If r ̸= 1 is a real number, then the geometric series

∞∑
k=1

rk = lim
n→∞

n∑
k=1

rk = lim
n→∞

r − rn+1

1− r

{
converges to

r

1− r
if |r| < 1,

diverges if |r| > 1.
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Examples

1. Suppose that

sn =
n∑

k=1

ak =
2n

3n+ 5
for each n = 1, 2, . . . .

Then
∞∑
k=1

ak = lim
n→∞

sn = lim
n→∞

2n

3n+ 5
=

2

3
.

2. The sum of the geometric series 5− 10

3
+

20

9
− 40

27
+ · · · is

5− 10

3
+

20

9
− 40

27
+ · · · = 5 · 1

1− (−2
3
)
= 3.

3. The harmonic series
∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · · is divergent since

s2n =
2n∑
k=1

1

k
= 1+

(
1

2

)
+

(
1

2 + 1
+

1

22

)
+· · ·+

(
1

2n−1 + 1
+ · · · 1

2n

)
≥ 1+

1

2
+

2

22
+· · ·+2n−1

2n
= 1+

n

2
.

4. The sum of the series
∞∑
k=1

[
3

k(k + 1)
+

1

2k

]
is

∞∑
k=1

[
3

k(k + 1)
+

1

2k

]
= lim

n→∞

[
n∑

k=1

3

k
−

n∑
k=1

3

k + 1

]
+

1
2

1− 1
2

= 3 · 1 + 1 = 4.

The Integral Test Suppose that f is a continuous, positive, decreasing function on [1,∞), and
let ak = f(k). Then

• the series
∞∑
k=1

ak is convergent if and only if the improper integral

∫ ∞

1

f(x) dx is convergent.

In other words,

(i) if

∫ ∞

1

f(x) dx is convergent, then
∞∑
k=1

ak is convergent.

(ii) if

∫ ∞

1

f(x) dx is divergent, then
∞∑
k=1

ak is divergent.

Proof For each k = 1, 2, . . . , let ak = f(k) and for each n = 1, 2, . . . let

Rn =
∞∑

k=n+1

ak =
∞∑
k=1

ak −
n∑

k=1

ak = s− sn be the nth remainder term.

Since f is decreasing on [1,∞), we have
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� ak = f(k) ≥ f(x) ≥ f(k + 1) = ak+1 for each x ∈ [k, k + 1] and for each k = 1, 2, . . . ,

�

∫ ∞

n

f(x) dx
(∗)
≥ Rn =

∞∑
k=n+1

ak = an+1 + an+2 + · · ·
(†)
≥
∫ ∞

n+1

f(x) dx for each n ≥ 1.

Thus∫ ∞

1

f(x)dx is convergent
def⇐⇒ lim

n→∞

∫ ∞

n

f(x)dx = 0,

(∗)⇐⇒
(†)

lim
n→∞

Rn = lim
n→∞

∞∑
k=n+1

ak = 0
def⇐⇒

∞∑
k=1

ak is convergent.

Examples

1. The p-series
∞∑
k=1

1

kp
is convergent if p > 1 and divergent if p ≤ 1.

2. Test the series
∞∑
n=1

1

n2 + 1
for convergence or divergence.

3. Determine whether the series
∞∑
n=1

lnn

n
converges or diverges.

[Note that if f(x) =
lnx

x
, x ≥ 1, then f ′(x) =

1− lnx

x2
< 0 for x > e, and f(x) is positive,

decreasing on [e,∞). ]

4.

(a) Approximate the sum of the series
∞∑
k=1

1

k3
by using the sum of the first 10 terms.

Estimate the error involved in this approximation.

[Solution: s10 ≈ 1.1975 and since R10 = s − s10
(∗)
≤
∫ ∞

10

1

x3
dx =

1

200
= 0.005, the size

of the error is at most 0.005. ]

(b) How many terms are required to ensure that the sum is accurate to within 0.0005?
[Solution: Accuracy to within 0.0005 means that we have to find a value of n such that

Rn ≤ 0.0005. Since Rn

(∗)
≤
∫ ∞

n

1

x3
dx =

1

2n2
, we want

1

2n2
< 0.0005 =⇒ n2 > 1000 or

n >
√
1000 ≈ 31.6. So we need 32 terms to ensure accuracy to within 0.0005. ]

Page 3



Calculus Study Guide 9 (Continued)

5. Note that if we add sn to each side of estimates (∗), (†) for the remainder Rn = s− sn, we
get a lower bound and an upper bound for s.

sn+

∫ ∞

n

f(x) dx ≥ sn+Rn = s ≥ sn+

∫ ∞

n+1

f(x) dx =⇒
∫ ∞

n

f(x) dx ≥ s−sn ≥
∫ ∞

n+1

f(x) dx.

The Comparison Tests

� (The Direct Comparison Test) Suppose that
∞∑
k=1

ak and
∞∑
k=1

bk are series with positive terms.

(a) If
∞∑
k=1

bk = lim
n→∞

n∑
k=1

bk is convergent and ak ≤ bk for all k, then
∞∑
k=1

ak is also convergent.

(b) If
∞∑
k=1

bk is divergent and ak ≥ bk for all k, then
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak is also divergent.

� (The Limit Comparison Test) Suppose that
∞∑
k=1

ak and
∞∑
k=1

bk are series with positive terms.

(a) If lim
k→∞

ak
bk

= r ∈ (0,∞), then either both series converge or both diverge.

(b) If lim
k→∞

ak
bk

= 0 and if
∞∑
k=1

bk is convergent, then
∞∑
k=1

ak is convergent.

(c) If lim
k→∞

ak
bk

= ∞ and if
∞∑
k=1

ak is convergent, then
∞∑
k=1

bk is convergent.

Examples

1. Determine whether the series
∞∑
k=1

5

2k2 + 4k + 3
converges or diverges.

2. Test the series
∞∑
k=1

1

2k − 1
for convergence or divergence.

3. Determine whether the series
∞∑
k=1

2k2 + 3k√
5 + k5

converges or diverges.

4. Use the sum of the first 100 terms to approximate the sum of the series
∞∑
k=1

1

k3 + 1
. Estimate

the error involved in this approximation.

[Solution: Let

Rn =
∞∑

k=n+1

1

k3 + 1
, Tn =

∞∑
k=n+1

1

k3
≤
∫ ∞

n

1

x3
dx =

1

2n2
.

Then R100

(∗)
≤
∫ ∞

100

1

x3
dx =

1

2(100)2
= 0.00005. ]
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Alternating Series and Absolute Convergence

An alternating series is a series whose terms are alternately positive and negative. The following
test says that if the terms of an alternating series decrease toward 0 in absolute value, then the
series converges.

Alternating Series Test

� If bk > 0, bk ≥ bk+1 for all k ≥ 1 and

� if lim
k→∞

bk = 0,

then the alternating series

∞∑
k=1

(−1)k−1bk = b1 − b2 + b3 − b4 + b5 − b6 + · · · is convergent.

Furthermore,

� if
∞∑
k=1

(−1)k−1bk = s ∈ R, i.e. the alternating series converges to s ∈ R, and

� if Rn = s− sn =
∞∑

k=n+1

(−1)k−1bk,

then for each n = 1, 2, . . . we have

|Rn| = |s− sn|
= (bn+1 − bn+2) + (bn+3 − bn+4) + (bn+5 − bn+6) + · · ·
= bn+1 − (bn+2 − bn+3)− (bn+4 − bn+5)− · · ·
≤ bn+1 since bn+k − bn+k+1 ≥ 0 for all k ≥ 2.

Examples

1. The alternating harmonic series
∞∑
k=1

(−1)k−1

k
is convergent by the Alternating Series Test.

2. The alternating harmonic series
∞∑
k=1

(−1)k3k

4k − 1
is divergent since lim

k→∞

3k

4k − 1
=

3

4
̸= 0.

3. Determine the convergence of the series
∞∑
k=1

(−1)k+1k2

k3 + 1
.

4. Find the sum of the series
∞∑
k=0

(−1)k

k!
correct to three decimal places.

[Solution: First observe that the series
∞∑
k=0

(−1)k

k!
is convergent by the Alternating Series

Test. Since b7 =
1

7!
=

1

5040
<

1

5000
= 0.0002 and s6 =

6∑
k=0

(−1)k

k!
≈ 0.368056, so we have

s ≈ 0.368 correct to three decimal places.]
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Definitions

� A series
∑

ak is called absolutely convergent if the series of absolute values
∑

|ak| is
convergent.

� A series
∑

ak is called conditionally convergent if it is convergent but not absolutely

convergent; that is, if
∑

ak converges but
∑

|ak| diverges.

Theorem If a series
∑

ak is absolutely convergent, then it is convergent.

Proof Since
∑

ak is absolutely convergent and |Rn| ≤
∞∑

k=n+1

|ak| for all n, we have 0 ≤

lim
n→∞

|Rn| ≤ lim
n→∞

∞∑
k=n+1

|ak| = 0 =⇒ lim
n→∞

|Rn| = 0. Hence, the series
∑

ak is convergent.

Examples

1. The alternating series
∞∑
k=1

(−1)k−1

k2
is absolutely convergent since

∞∑
k=1

∣∣∣∣(−1)k−1

k2

∣∣∣∣ = ∞∑
k=1

1

k2
is

a convergent p-series (p = 2 > 1).

2. The alternating harmonic series
∞∑
k=1

(−1)k−1

k
is conditionally convergent since

∞∑
k=1

(−1)k−1

k
is

convergent by the Alternating Series Test and
∞∑
k=1

∣∣∣∣(−1)k−1

k

∣∣∣∣ = ∞∑
k=1

1

k
is a divergent p-series.

3. Determine whether the series
∞∑
n=1

cosn

n2
is convergent or divergent.

[Solution: Since
∣∣∣cosn
n2

∣∣∣ ≤ 1

n2
for all n and since the p-series

∞∑
n=1

1

n2
is convergent, the series

∞∑
n=1

cosn

n2
is absolutely convergent by the Comparison Test, and hence it is convergent.]

4. Determine whether the series is absolutely convergent, conditionally convergent, or diver-

gent. (a)
∞∑
k=1

(−1)k

k3
, (b)

∞∑
k=1

(−1)k

3
√
k

, (c)
∞∑
k=1

(−1)kk

2k + 1

Definition By a rearrangement of an infinite series
∑

ak we mean a series obtained by simply

changing the order of the terms. For instance, a rearrangement of
∑

ak could start as follows:

a1 + a2 + a5 + a3 + a4 + a10 + a6 + a7 + a15 + · · ·

It turns out that if
∑

ak is absolutely convergent series with sum s, then any rearrangement of∑
ak has the same sum s.
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However, any conditionally convergent series can be rearranged to give a different sum. To
illustrate this fact let’s consider the alternating harmonic series

(∗) 1− 1

2
+

1

3
−1

4
+

1

5
− 1

6
+

1

7
−1

8
+ · · · = s = ln2,

where we assume that ln(1 + x) =
∞∑
k=1

(−1)k−1xk

k
for −1 < x ≤ 1. If we multiply by

1

2
, we get

1

2
− 1

4
+

1

6
− 1

8
+ · · · = 1

2
s =

1

2
ln2

Inserting zeros between the terms of this series, we have

(†) 0 +
1

2
+ 0−1

4
+ 0 +

1

6
+ 0−1

8
+ · · · = 1

2
s =

1

2
ln2

Now we add the series in (∗) and (†):

(∗∗) 1 +
1

3
−1

2
+

1

5
+

1

7
−1

4
+

1

9
+

1

11
− · · · = 3

2
s =

3

2
ln2

Notice that the series in (∗∗) contains the same terms as in (∗) but rearranged so that one
negative term occurs after each pair of positive terms. The sums of these series, however, are
different. In fact, Riemann proved that

• if
∑

ak is a conditionally convergent series and r is any real number whatsoever, then there

is a rearrangement of
∑

ak that has a sum equal to r.

The Ratio and Root Tests

The Ratio Test Suppose that ak ̸= 0 for all k = 1, 2, . . . .

(i) If lim
k→∞

|ak+1|
|ak|

= L < 1, then the series
∞∑
k=1

ak is absolutely convergent (and therefore con-

vergent).

(ii) If lim
k→∞

|ak+1|
|ak|

= L > 1 or lim
k→∞

|ak+1|
|ak|

= ∞, then the series
∞∑
k=1

ak is divergent.

(iii) If lim
k→∞

|ak+1|
|ak|

= 1, the Ratio Test is inconclusive; that is, no conclusion can be drawn about

the convergence or divergence of
∞∑
k=1

ak.

Examples

1. Test the series
∞∑
n=1

(−1)nn3

3n
for absolute convergence.

2. Determine the convergence of
∞∑
n=1

1

n!
.
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3. Determine the convergence of
∞∑
n=1

(−1)n−1

(2n− 1)!
.

4. Determine the convergence of
∞∑
n=1

nn

n!
.

The Root Test

(i) If lim
k→∞

k
√
|ak| = L < 1, then the series

∞∑
k=1

ak is absolutely convergent (and therefore con-

vergent).

(ii) If lim
k→∞

k
√
|ak| = L > 1 or lim

k→∞
k
√

|ak| = ∞, then the series
∞∑
k=1

ak is divergent.

(iii) If lim
k→∞

k
√

|ak| = 1, the Root Test is inconclusive.

Examples

1. Test the convergence of the series
∞∑
n=1

(
2n+ 3

3n+ 2

)n

.

2. Determine whether the series
∞∑
n=1

(
1 +

1

n

)n2

converges or diverges.

Strategy for Testing Series

Examples In the following examples, don’t work out all the details but simply indicate which
tests should be used.

1.
∞∑
n=1

n− 1

2n+ 1
[Solution: Use the Test for Divergence.]

2.
∞∑
n=1

√
n3 + 1

3n3 + 4n2 + 2
[Solution: Use the Limit Comparison Test.]

3.
∞∑
n=1

(−1)n
n2

n4 + 1
[Solution: Use the Alternating Series Test. We can also observe that the

series converges absolutely and hence converges.]

4.
∞∑
k=1

2k

k!
[Solution: Use the Ratio Test.]

5.
∞∑
n=1

1

2 + 3n
[Solution: Use the Comparison or the Limit Comparison Test.]

Power Series

Definition A power series in x is a series of the form

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · · = lim

n→∞

n∑
k=0

akx
k,

Page 8



Calculus Study Guide 9 (Continued)

where x is a variable and the ak’s are constants called the coefficients of the series.

For each number that we substitute for x, the series is a series of constants that we can test for
convergence or divergence. A power series may converge for some values of x and diverge for
other values of x.

The sum of the power series is a function

s(x) =
∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ akx
k + · · · = lim

n→∞

n∑
k=0

akx
k

whose domain is the set of all x for which the series converges. Notice that s(x) resembles a
polynomial. The only difference is that s(x) has infinitely many terms.

More generally, a series of the form

∞∑
k=0

ak(x− a)k = a0 + a1(x− a) + a2(x− a)2 + · · · = lim
n→∞

n∑
k=0

ak(x− a)k

is called a power series in (x− a) or a power series centered at a or a power series about a.

Proposition Suppose that ak ̸= 0 for all k = 1, 2, . . . , and for a fixed point x ̸= a, suppose that

lim
k→∞

k
√

|ak(x− a)k| =
(
lim
k→∞

k
√

|ak|
)
|x− a| = L < 1 or

(
lim
k→∞

|ak+1|
|ak|

)
|x− a| = L < 1.

Then
∞∑
k=1

ak(y − a)k is absolutely convergent for all |y − a| ≤ |x− a|.

Theorem For a power series
∞∑
k=0

ak(x− a)k, there are only three possibilities:

(1) The series converges only when x = a.

(2) The series converges for all x.

(3) There is a positive number R, called the radius of convergence of the power series, such that

–
∞∑
k=0

ak(x− a)k converges if |x− a| < R and

–
∞∑
k=0

ak(x− a)k diverges if |x− a| > R.

By convention,

� the radius of convergence is R = 0 in case (1) and

� R = ∞ in case (2).

The interval of convergence of a power series is the interval that consists of all values of x for
which the series converges.

� In case (1), the interval consists of just a single point a.

� In case (2), the interval is (−∞,∞).

� In case (3), the interval is one of (a−R, a+R), [a−R, a+R), (a−R, a+R] or [a−R, a+R].
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Proposition (radius of convergence) Suppose that ak ̸= 0 for all k = 1, 2, . . . , and suppose
that

lim
k→∞

k
√
|ak| = L or lim

k→∞

|ak+1|
|ak|

= L for some 0 ≤ L ≤ ∞.

Then the radius of convergence R of the power series
∞∑
k=1

ak(x− a)k is given by

(i) R = 1/L if 0 < L < ∞.

Proof Since

lim
k→∞

k
√
|ak(x− a)k| = lim

k→∞
k
√

|ak||x− a|

{
<L · 1/L = 1 for each |x− a| < R = 1/L,

>L · 1/L = 1 for each |x− a| > R = 1/L,

or

lim
k→∞

∣∣ak+1(x− a)k+1
∣∣

|ak(x− a)k|
= lim

k→∞

|ak+1|
|ak|

|x−a|

{
<L · 1/L = 1 for each 0 < |x− a| < R = 1/L,

>L · 1/L = 1 for each |x− a| > R = 1/L,

so
∞∑
k=1

ak(x− a)k

– converges for each |x− a| < R = 1/L,

– diverges for each |x− a| > R = 1/L,

and R = 1/L is the radius of convergence of the power series
∞∑
k=1

ak(x− a)k.

(ii) R = ∞ if L = 0.

(iii) R = 0 if L = ∞.

Examples

1. For what values of x is the series
∞∑
n=0

xn convergent?

[Solution: By the Ratio Test and the Divergence Test, the series converges (absolutely) only
when |x| < 1.]

2. For what values of x is the series
∞∑
n=1

(x− 3)n

n
convergent?

[Solution: By the Ratio Test, the Alternating Series Test and the p-series Test, the series
converges only when 2 ≤ x < 4.]

3. For what values of x is the series
∞∑
n=0

n!xn convergent?

[Solution: By the Ratio Test, the series converges only when x = 0.]

4. For what values of x is the series
∞∑
n=0

xn

(2n)!
convergent?

[Solution: By the Ratio Test, the series converges (absolutely) when x ∈ (−∞,∞).]
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Representations of Functions as Power Series

Examples

1. Since the power series
∞∑
k=0

xk converges absolutely for |x| < 1, and since

∞∑
k=0

xk = lim
n→∞

n∑
k=0

xk = lim
n→∞

1− xn+1

1− x
=

1

1− x
for |x| < 1,

we say that
∞∑
k=0

xk, is a power series representation of
1

1− x
for x ∈ (−1, 1).

2. Express
1

1 + x2
as the sum of a power series and find the interval of convergence.

[Solution:
1

1 + x2
=

1

1− (−x2)
=

∞∑
k=0

(−x2)k converges for | − x2| < 1 ⇐⇒ |x| < 1.]

Differentiation and Integration of Power Series

Theorem If the power series
∞∑
k=0

ak(x− a)k has radius of convergence R > 0, then the function

f defined by

f(x) =
∞∑
k=0

ak(x− a)k = a0 + a1(x− a) + a2(x− a)2 + · · ·

is differentiable (and therefore continuous) and

(i) f ′(x) =
d

dx

∞∑
k=0

ak(x− a)k =
∞∑
k=0

d

dx

[
ak(x− a)k

]
=

∞∑
k=1

k ak(x− a)k−1

for each x ∈ (a−R, a+R),

(ii)

∫
f(x) dx =

∫ ∞∑
k=0

ak(x− a)k dx =
∞∑
k=0

∫
ak(x− a)k dx = C +

∞∑
k=0

ak
k + 1

(x− a)k+1

on the interval (a−R, a+R).

(iii) the radii of convergence of
∞∑
k=1

k ak(x− a)k−1 and
∞∑
k=0

ak
k + 1

(x− a)k+1 are both R,

(iv) f has derivatives of all order n = 0, 1, 2 . . . on (a−R, a+R) and for each x ∈ (a−R, a+R),

f (n)(x) =
dn

dxn

∞∑
k=0

ak(x−a)k =
∞∑
k=0

dn

dxn

[
ak(x− a)k

]
=

∞∑
k=n

k(k−1) · · · (k−n+1)ak(x−a)k−n.

Examples

1. Express
1

(1− x)2
as a power series by differentiating the Equation

1

1− x
=

∞∑
n=0

xn. What is

the radius of convergence?
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[Solution: Since
1

1− x
=

∞∑
n=0

xn for |x| < 1, and by differentiating both sides, we get

1

(1− x)2
=

∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn for |x| < 1.

Since lim
n→∞

(n+ 1)1/n = 1, the radius of convergence R = 1. ]

2. Express tan−1 x as a power series by integrating the equation
1

1 + x2
=

∞∑
n=0

(−1)nx2n. What

is the radius of convergence?

[Solution: For |x| < 1, since

tan−1 x = tan−1 z|x0 =

∫ x

0

1

1 + z2
dz

=

∫ x

0

∞∑
n=0

(−1)nz2n dz =
∞∑
n=0

∫ x

0

(−1)nz2n dz =
∞∑
n=0

(−1)n

2n+ 1
x2n+1

and since
∞∑
n=0

(−1)n

2n+ 1
x2n+1 converges when x = ±1, we have

tan−1 x =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 for all |x| ≤ 1. ]

Examples (from Section 17.4)

1. Use power series y =
∞∑
n=0

cnx
n to solve the equation y′ = ry, where r is a constant.

0 = y′ − ry =
∞∑
n=1

ncnx
n−1 −

∞∑
n=0

rcnx
n =

∞∑
n=0

[(n+ 1)cn+1 − rcn]x
n

=⇒ cn+1 =
rcn
n+ 1

forn = 0, 1, 2, . . . (called a recursive relation)

=⇒ cn+1 =
rcn
n+ 1

=
r2cn−1

(n+ 1)n
= · · · = rn+1c0

(n+ 1)!

=⇒ y = c0

∞∑
n=0

rn

n!
xn = c0e

rx

2. Use power series y =
∞∑
n=0

cnx
n to solve the equation y′′ + ry = 0, where r > 0 is a constant.

0 = y′′ + ry =
∞∑
n=2

n(n− 1)cnx
n−2 +

∞∑
n=0

rcnx
n =

∞∑
n=0

[(n+ 2)(n+ 1)cn+2 + rcn]x
n

=⇒ cn+2 =
−rcn

(n+ 2)(n+ 1)
forn = 0, 1, 2, . . . (called a recursive relation)
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=⇒ c2n =
(−r)c2n−2

(2n)(2n− 1)
=

(−r)2c2n−4

(2n)(2n− 1)(2n− 2)(2n− 3)
= · · · = (−r)nc0

(2n)!
, n = 0, 1, 2, . . .

c2n+1 =
(−r)c2n−1

(2n+ 1)(2n)
=

(−r)2c2n−3

(2n+ 1)(2n)(2n− 1)(2n− 2)
= · · · = (−r)nc1

(2n+ 1)!
, n = 0, 1, 2, . . .

=⇒ y = c0

∞∑
n=0

(−1)nrn

(2n)!
x2n + c1

∞∑
n=0

(−1)nrn

(2n+ 1)!
x2n+1 = c0 cos

√
rx+ c1 sin

√
rx

3. Show that J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
, the Bessel function of order 0, is a solution of the Bessel

equation x2y′′ + xy′ + x2y = 0.

If y =
∞∑
n=0

cnx
n, then x2y =

∞∑
n=0

cnx
n+2, and

y′ =
∞∑
n=1

ncnx
n−1, y′′ =

∞∑
n=2

n(n− 1)cnx
n−2

=⇒ xy′ =
∞∑
n=1

ncnx
n, x2y′′ =

∞∑
n=2

n(n− 1)cnx
n

=⇒ xy′ = c1x+
∞∑
n=2

ncnx
n, x2y′′ =

∞∑
n=2

n(n− 1)cnx
n

set k=n−2
=⇒

n=k+2
xy′ = c1x+

∞∑
k=0

(k + 2)ck+2x
k+2, x2y′′ =

∞∑
k=0

(k + 2)(k + 1)ck+2x
k+2

set k=n
=⇒ xy′ = c1x+

∞∑
n=0

(n+ 2)cn+2x
n+2, x2y′′ =

∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n+2

=⇒ 0 = x2y′′ + xy′ + x2y = c1x+
∞∑
n=0

[(n+ 2)(n+ 1)cn+2 + (n+ 2)cn+2 + cn]x
n+2

=⇒ 0 = c1x+
∞∑
n=0

[(n+ 2)2cn+2 + cn]x
n+2

=⇒ c1 = 0, cn+2 =
(−1)cn
(n+ 2)2

for n = 0, 1, 2, . . . (called a recursive relation)

=⇒ c2n+1 = 0, c2n =
(−1)c2n−2

(2n)2
=

(−1)2c2n−4

[22n2][22(n− 1)2]
= · · · = (−1)nc0

22n(n!)2
for n = 0, 1, 2, . . .

=⇒ y = c0

∞∑
n=0

(−1)nx2n

22n(n!)2
set c0=1
=

∞∑
n=0

(−1)nx2n

22n(n!)2
= J0(x).

(a) Find the domain of J0(x). [Solution: By the Ratio Test, the series converges for all
values of x. In other words, the domain of the Bessel function J0 is (−∞,∞).]

(b) Find the derivative of J0(x). [Solution: J
′
0(x) =

∞∑
n=0

d

dx

(−1)nx2n

22n(n!)2
=

∞∑
n=1

(−1)n(2n)x2n−1

22n(n!)2
.]
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Taylor and Maclaurin Series

Taylor’s Theorem If f(x) has derivatives of all orders in an open interval I = (a− R, a + R)
containing a, then for each positive integer n and for each x ∈ I,

f(x) = Pn(x) +Rn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

1

n!

∫ x

a

f (n+1)(t) (x− t)n dt,

where f (k)(a) =
dkf

dxk
(a) is the kth derivative of f at a for k ≥ 1, f (0)(a) = f(a), and

� Pn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k = f(a)+

f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+ · · ·+ 1

n!

dnf

dxn
(a)(x−a)n

is called the nth-degree Taylor polynomial of f at a

� Rn(x) = f(x) − Pn(x) =
1

n!

∫ x

a

f (n+1)(t) (x − t)n dt is called the remainder of order n for

the approximation of f(x) by Pn(x) over I.

Proof Using integration by parts formula

∫ x

a

u dv = uv|xa −
∫ x

a

v du repeatedly, we get

f(x)− f(a) =

∫ x

a

f ′(t) dt = −
∫ x

a

f ′(t) d(x− t), u = f ′(t), dv = −d(x− t)

= −f ′(t)(x− t)|xa +
∫ x

a

f ′′(t) (x− t) dt

= f ′(a)(x− a)− 1

2!

∫ x

a

f ′′(t) d(x− t)2, u = f ′′(t), dv = −d(x− t)2

2!

= f ′(a)(x− a)− 1

2!
f ′′(t)(x− t)2|xa +

1

2!

∫ x

a

f ′′′(t)(x− t)2 dt

= f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 − 1

3!

∫ x

a

f ′′′(t) d(x− t)3

· · · · · · · · ·
(∗)
= f ′(a)(x− a) + · · ·+ 1

n!
f (n)(a)(x− a)n +

1

n!

∫ x

a

f (n+1)(t) (x− t)n dt

The Remainder Estimation Theorem If there exists a positive constant such that |f (n+1)(x)| ≤
M for all |x−a| ≤ R, then the remainder term Rn(x) in Taylor’s Theorem satisfies the inequality

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ R.

Proof Taylor’s Theorem implies that

|Rn(x)|
(∗)
= |f(x)−Pn(x)| ≤

1

n!

∣∣∣∣∫ x

a

|f (n+1)(t)| (x− t)n dt

∣∣∣∣ ≤ M

(n+ 1)!

∣∣(x− t)n+1 |xa
∣∣ = M

(n+ 1)!
|x−a|n+1.

Lagrange Remainder In fact, since f (n+1)(x) is continuous for each |x − a| < R and by the
Mean Value Theorem for an integral, there exists a c between a and x such that

Rn(x)
(∗)
= f(x)− Pn(x) =

1

n!

∫ x

a

f (n+1)(t) (x− t)n dt =
−1

(n+ 1)!

∫ x

a

f (n+1)(t) d(x− t)n+1

=
−f (n+1)(c)

(n+ 1)!

∫ x

a

d(x− t)n+1 dt =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.
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Theorem If lim
n→∞

Rn(x) = 0 for each |x− a| < R, then f has a power series expansion at a, that

is

f(x) = lim
n→∞

n∑
k=0

f (k)(a)

k!
(x− a)k =

∞∑
k=0

f (k)(a)

k!
(x− a)k for each |x− a| < R,

where the series
∞∑
k=0

f (k)(a)

k!
(x− a)k is called the Taylor series of the function f at a (or about a

or centered at a).

In case a = 0, the Taylor series becomes

f(x) =
∞∑
k=0

f (k)(0)

k!
xk = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · for |x| < R

and it is called the Maclaurin series of f .

Examples

1. Find the Maclaurin series of the function f(x) =
1

1∓ x
and its radius of convergence.

[Solution:
1

1∓ x
=

∞∑
n=0

(±x)n and R = 1 by the Ratio Test.]

2. Find the Maclaurin series of the function f(x) = ex and its radius of convergence.

[Solution: ex =
∞∑
n=0

1

n!
xn and R = ∞ by the Ratio Test.]

3. Find the Maclaurin series of the function f(x) = sinx and its radius of convergence.

[Solution: sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
and R = ∞ by the Ratio Test.]

4. Find the Maclaurin series of the function f(x) = cos x and its radius of convergence.

[Solution: cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
and R = ∞ by the Ratio Test.]

5. Find the Maclaurin series of the function f(x) = tan−1 x and its radius of convergence.

[Solution: tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
and R = 1 by the Ratio Test.]

6. Find the Maclaurin series of the function f(x) = ln(1 + x) and its radius of convergence.

[Solution: ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
=

∞∑
k=0

(−1)k
xk+1

k + 1
and R = 1 by the Ratio Test.]

7. Find the Maclaurin series of the function f(x) = (1 + x)k and its radius of convergence.

[Solution: (1 + x)k =
k∑

n=0

(
k

n

)
xn and R = 1 by the Ratio Test.]

8. Find the Maclaurin series for (a) f(x) = x cosx and (b) f(x) = ln(1 + 3x2).

[Solution: x cosx =
∞∑
n=0

(−1)n
x2n+1

(2n)!
and ln(1+3x2) =

∞∑
n=1

(−1)n−13
nx2n

n
=

∞∑
k=0

(−1)k
3k+1x2k+2

k + 1
]
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9. Find the first three nonzero terms in the Maclaurin series for (a) ex sinx and (b) tanx.

[Solution: (a) x+ x2 +
1

3
x3 + · · · ; (b) x+

1

3
x3 +

2

15
x5 + · · · ]

Examples

(a) Approximate the function f(x) = 3
√
x by a Taylor polynomial of degree 2 at a = 8.

[Solution: T2(x) = 2 +
1

12
(x− 8)− 1

288
(x− 8)2.]

(b) How accurate is this approximation when 7 ≤ x ≤ 9?

[Solution: Because x ≥ 7, we have x8/3 ≥ 78/3 and so

f ′′′(x) =
10

27
· 1

x8/3
≤ 10

27
· 1

78/3
< 0.0021 =⇒ |R2(x)| ≤

0.0021

3!
|x− 8|3 < 0.0004. ]

Some Proofs

(a) (The Direct Comparison Test) Suppose that
∞∑
k=1

ak and
∞∑
k=1

bk are series with positive

terms. If
∞∑
k=1

bk = lim
n→∞

n∑
k=1

bk is convergent and ak ≤ bk for all k, then
∞∑
k=1

ak is also

convergent.

Proof Since
∞∑
k=1

bk = lim
n→∞

n∑
k=1

bk is convergent,

0 = lim
n→∞

∞∑
k=n+1

bk ≥ lim
n→∞

∞∑
k=n+1

ak ≥ 0 =⇒ lim
n→∞

∞∑
k=n+1

ak = 0 by the squeeze theorem,

and that
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak is convergent.

(b) (The Limit Comparison Test) Suppose that
∞∑
k=1

ak and
∞∑
k=1

bk are series with positive

terms.

� If lim
k→∞

ak
bk

= r ∈ (0,∞), then either both series converge or both diverge.

Proof Let ε =
r

2
> 0. Since lim

k→∞

ak
bk

= r ∈ (0,∞), there is an M ∈ N such that∣∣∣∣akbk − r

∣∣∣∣ < ε =
r

2
for all k ≥ M

⇐⇒ −r

2
<

ak
bk

− r <
r

2
⇐⇒ r

2
<

ak
bk

<
3r

2
for all k ≥ M

⇐⇒ r

2
bk < ak <

3r

2
bk for all k ≥ M.

=⇒ 0 <
r

2

∞∑
k=n

bk <
∞∑
k=n

ak <
3r

2

∞∑
k=n

bk for all n ≥ M.

� If lim
k→∞

ak
bk

= 0 and if
∞∑
k=1

bk is convergent, then
∞∑
k=1

ak is convergent.
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Proof Since lim
k→∞

ak
bk

= 0, there is an M ∈ N such that

0 <
ak
bk

=

∣∣∣∣akbk − 0

∣∣∣∣ < 1 for all k ≥ M ⇐⇒ 0 <
ak
bk

< 1 for all k ≥ M

⇐⇒ 0 < ak < bk for all k ≥ M. =⇒ 0 <

∞∑
k=n

ak <
∞∑
k=n

bk for all n ≥ M.

� If lim
k→∞

ak
bk

= ∞ and if
∞∑
k=1

ak is convergent, then
∞∑
k=1

bk is convergent.

Proof Since lim
k→∞

ak
bk

= ∞, there is an M ∈ N such that
ak
bk

> 1 for all k ≥ M. Thus we

have

ak > bk for all k ≥ M =⇒
∞∑
k=n

ak >
∞∑
k=n

bk > 0 for all n ≥ M.

(c) (The Ratio Test) Suppose that ak ̸= 0 for all k = 1, 2, . . . , and suppose that lim
k→∞

|ak+1|
|ak|

=

L < 1, then the series
∞∑
k=1

ak is absolutely convergent (and therefore convergent).

Proof Given
1− L

2
> ε > 0, since lim

k→∞

|ak+1|
|ak|

= L < 1, there is an M ∈ N such that∣∣∣∣ |ak+1|
|ak|

− L

∣∣∣∣ < ε <
1− L

2
for all k ≥ M

=⇒ |ak+1|
|ak|

< L+
1− L

2
=

1 + L

2
< 1 for all k ≥ M

=⇒ |ak+1| <
(
1 + L

2

)
|ak| for all k ≥ M

=⇒ |ak| <
(
1 + L

2

)
|ak−1| <

(
1 + L

2

)2

|ak−2| < · · · <
(
1 + L

2

)k−M

|aM | for all k ≥ M

=⇒
∞∑
k=n

|ak| ≤
∞∑
k=n

(
1 + L

2

)k−M

|aM | =
(
1 + L

2

)n−M

· |aM |
1− (1 + L)/2

for all n ≥ M

(d) (The Root Test) If lim
k→∞

k
√

|ak| = L < 1, then the series
∞∑
k=1

ak is absolutely convergent

(and therefore convergent).

Proof Given
1− L

2
> ε > 0, since lim

k→∞
k
√
|ak| = L < 1, there is an M ∈ N such that∣∣∣ k

√
|ak| − L

∣∣∣ < ε for all k ≥ M

=⇒ k
√

|ak| − L < ε <
1− L

2
for all k ≥ M

=⇒ 0 ≤ k
√

|ak| ≤
(
1 + L

2

)
< 1 for all k ≥ M

=⇒ |ak| ≤
(
1 + L

2

)k

for all k ≥ M

Page 17



Calculus Study Guide 9 (Continued)

=⇒
∞∑
k=n

|ak| ≤
∞∑
k=n

(
1 + L

2

)k

=

(
1 + L

2

)n

· 1

1− (1 + L)/2
for all n ≥ M

(e) (Lagrange Remainder) If f (n+1)(t) is continuous on [a, x], then there exists a c ∈ [a, x]
such that∫ x

a

f (n+1)(t) (x− t)n dt = f (n+1)(c)

∫ x

a

(x− t)n dt =
f (n+1)(c)

n+ 1
(x− a)n+1.

Proof Since f (n+1)(t) is continuous and (x − t)n ≥ 0 on [a, x], there exist m and M such
that m ≤ f (n+1)(t) ≤ M for each t ∈ [a, x] and

m

∫ x

a

(x− t)n dt ≤
∫ x

a

f (n+1)(t) (x− t)n dt ≤ M

∫ x

a

(x− t)n dt

=⇒ m ≤
∫ x

a
f (n+1)(t) (x− t)n dt∫ x

a
(x− t)n dt

≤ M.

By the Intermediate Value Theorem, there is a point c ∈ [a, x] such that

f (n+1)(c) =

∫ x

a
f (n+1)(t) (x− t)n dt∫ x

a
(x− t)n dt

=⇒
∫ x

a

f (n+1)(t) (x− t)n dt =
f (n+1)(c)

n+ 1
(x− a)n+1.
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